Math, asked by mahimakalagadda1, 9 months ago

3x3 x square minus x minus 4 find the zeros of the polynomial environment the relationship between the zeros and the coefficients ​

Answers

Answered by Anonymous
9

\large\bf\underbrace{ \: Correct  \: Question:-}

find the zeroes of the polynomial 3x² - x - 4 and also find the relationship between the zeroes and coefficients.

━━━━━━━━━━━━━━━━━

\large\bf\underline{ Given :  - }

  • p(x) = 3x² - x -4

 \large\bf\underline { To \: find:-}

  • zeroes of given polynomial
  • Relationship between the zeroes and coefficients.

 \huge\bf\underline{Solution:-}

  • ≫ p(x) = 3x² - x - 4

➝ 3x² - x - 4

➝ 3x² + 3x - 4x - 4

➝ 3x( x + 1) - 4(x + 1)

➝ (3x -4)(x+1)

➝ x = 4/3 or x = -1

 \underline{ \bf \dag \:  Verification : -  }

Relationship between the zeroes and coefficients:-

  • p(x) = 3x² - x - 4
  • a = 3
  • b = -1
  • c = -4

≫ Sum of zeroes = -b/a

»» 4/3 +(-1) = -(-1)/3

»» 4/3 -1 = 1/3

»» (4-3)/3 = 1/3

»» 1/3 = 1/3

≫ Product of zeroes = c/a

»» 4/3 × (-1) = -4/3

»» -4/3 = -4/3

LHS = RHS

hence , relationship is verified.

Answered by silentlover45
0

\large\mathrm\red{Given:-}

  • p(x) = 3x² - x - 4

\large\mathrm\red{Solution}

\impliesp(x) = 3x² - x - 4

\implies3x² - (4 - 3)x - 4

\implies3x² - 4x + 3x - 4

\impliesx(3x - 4) + (3x - 4)

\implies(3x - 4) (x - 1)

\large\mathrm\red{Now},

\implies3x - 4 = 0

\implies3x = 4

\impliesx = 4/3

\large\mathrm\red{And},

\impliesx + 1 = 0

\impliesx = - 1

The two zeroes of p(x) are 4/3 and - 1.

\large\mathrm\red{We \: know \: that,}

\large\mathrm\red{Sum \: of \: zeroes }(α + β)

\implies4/3 + (-1)

\implies4/3 - 1

\implies4 - 3 / 3

\implies1/3

\large\mathrm\red{So},

  • - co -efficient of x / co -efficient of x² = 1/3. \large\mathrm\red{(Sum \: of \: zeroes)}

\large\mathrm\red{Product \: of \: zeroes}(α.β)

\implies4/3 × (-1)

\implies- 4/3

\large\mathrm\red{So},

  • constant/ co -efficient of x² = - 4/3. \large\mathrm\red{(product \: of \: zeroes).}

______________________________________

Similar questions