Math, asked by skr108108, 1 year ago

4^1+x + 4^1-x = 10 then the value of "x" is

Answers

Answered by Anonymous
9

HEYA \:  \:  \:  \\  \\ 4 {}^{( 1 + x)}  + 4 {}^{(1 - x)}  = 10 \\  \\ 4 {}^{1}  \times 4 {}^{x}  + 4 {}^{1}  \times 4 {}^{ - x}  = 10 \\  \\ 4 {}^{x}  + 4 {}^{ - x}  = 10 \div 4 \\  \\ 4 {}^{x}  + 4 {}^{ - x}  = 5 \div 2 \\  \\ let \:  \: 4 {}^{x}  = z \:  \:  \\  \\ z + (1 \div z) = 5 \div 2 \\  \\ z { }^{2}  + 1 = 5z \div 2 \\  \\ 2z {}^{2}  - 5z + 2 = 0 \\  \\ 2z {}^{2}  - 4z - z + 2 = 0 \\  \\ 2z(z - 2) - 1(z - 2) = 0  \\  \\ (2z - 1) = 0 \:  \: or \:  \: (z - 2) = 0 \\  \\ z = 1 \div 2 \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \: z = 2 \\  \\ 4 {}^{x}  = 2 {}^{ - 1}  \:  \:  \:  \: or \:  \:  \:  \: 4 {}^{x}  = 2 \\  \\ 2 {}^{2x}  = 2 {}^{ - 1}  \:  \:  \:  \: or \:  \:  \:  \: 2 {}^{2x}  = 2 {}^{1}  \\ now \: compare \: powers \: of \:  \: 2 \:  \: we \: have \:  \\  \\ 2x =  - 1 \:  \:  \: or \:  \:  \: 2x = 1 \\  \\ x =  - 1 \div 2 \:  \:  \:  \: or \:  \:  \:  \:  \: x = 1 \div 2


skr108108: thank you sir
Answered by sivaprasath
5

Answer:

x=±\frac{1}{2}

Step-by-step explanation:

Given :

4^{1+x}+4^{1-x} = 10

find x,.

Solution :

4^{1+x}+4^{1-x} = 10

4^{1} \times 4^{x}+4^{1} \times 4^{-x} = 10

4^{1} \times (4^{x}+4^{-x}) = 10

4(4^x+\frac{1}{4^x} ) = 10

\frac{4^{2x}+1}{4^x} = \frac{10}{4}

\frac{4^{2x}+1}{4^x} = \frac{5}{2}

2(4^{2x}+1) = 5(4^x)

2 \times 4^{2x} + 2 - 5 \times 4^x = 0

2 \times (4^{x})^2 - 5 \times 4^x + 2 = 0

2 \times (4^{x})^2 - 4 \times 4^x - 4^x + 2 = 0

2 \times 4^{x}[4^{x} - 2] - [4^x - 2] = 0

[2 \times 4^{x}-1][4^{x} - 2] = 0

Either,

[2 \times 4^{x}-1] = 0

(or) (or both)

[4^{x} - 2] = 0

(i)

[2 \times 4^{x}-1] = 0

2 \times 4^{x} = 1

4^x = \frac{1}{2}

4^x = \frac{1}{\sqrt{4}} = \frac{1}{4^{\frac{1}{2}}} = 4^{-\frac{1}{2}}

4^x = 4^{-\frac{1}{2}}x=-\frac{1}{2}

(ii)

[4^{x} - 2] = 0

4^{x} = 2

4^x = \sqrt{4}

4^{x} = 4^{\frac{1}{2}

x = \frac{1}{2}


sivaprasath: mark this answer as Brainliest
skr108108: thank you very much sir
Similar questions