Math, asked by simeonsonar, 1 year ago

[(4+√15)^3/2] -[(4-√15)^3/2]=k√6​

Answers

Answered by pinquancaro
8

The value of k is 9.

Step-by-step explanation:

Given : Expression [(4+\sqrt{15})^{\frac{3}{2}}]-[(4-\sqrt{15})^{\frac{3}{2}}]=k\sqrt6

To find : The value of k ?

Solution :

Re write the expression as,

[(4+\sqrt{15})^{\frac{1}{2}}]^3-[(4-\sqrt{15})^{\frac{1}{2}}]^3=k\sqrt6

Applying algebraic identity, a^3-b^3=(a-b)(a^2+b^2+ab)

Here, a=(4+\sqrt{15})^{\frac{1}{2}} and b=(4-\sqrt{15})^{\frac{1}{2}}

Substitute,

((4+\sqrt{15})^{\frac{1}{2}}-(4-\sqrt{15})^{\frac{1}{2}})[(4+\sqrt{15})^{\frac{2}{2}}+(4-\sqrt{15})^{\frac{2}{2}}+((4+\sqrt{15})^{\frac{1}{2}})((4-\sqrt{15})^{\frac{1}{2}})]=k\sqrt6

((4+\sqrt{15})^{\frac{1}{2}}-(4-\sqrt{15})^{\frac{1}{2}})[8+(16-15)^{\frac{1}{2}}]=k\sqrt6

((4+\sqrt{15})^{\frac{1}{2}}-(4-\sqrt{15})^{\frac{1}{2}})[9]=k\sqrt6

Squaring both side,

81[4+\sqrt{15}+4-\sqrt{15}-2[(4+\sqrt{15})(4-\sqrt{15})]^{\frac{1}{2}}]=k^2(\sqrt6)^2

81[8-2]=6k^2

81\times 6=6k^2

k^2=81

k=9

Therefore, the value of k is 9.

#Learn more

Simplify (4+root 7) (3+root 2)

https://brainly.in/question/9469746

Similar questions