Math, asked by aishu145, 3 months ago

4)1f tanO= 1 then find the values of (sinO + CosO) ÷ (secO+cosecO).​

Answers

Answered by evvganesh1
5

Step-by-step explanation:

tanO=1

tan45=1

so O=45

sinO=sin45=1/√2

cosO=cos45=1/2

secO=sec45=1/√2

cosecO=cosec45=1/2

(sinO + CosO) ÷ (secO+cosecO).

(sinO + CosO) =1/√2+1/√2=2/√2

(secO+cosecO)=√2+√2

(sinO + CosO) ÷ (secO+cosecO).=2/√2

2√2

2 \div  \sqrt{2}  \times 1 \div  \sqrt{2}  + 1  {} \div \sqrt{2}  = 2 \div  \sqrt{2}   \times 2 \div  \sqrt{2}

2/√2 * 2/√2 =

 \sqrt{2}   \times  \sqrt{2}

 \sqrt{2}  \times  \sqrt{2 }  = 2

hence the answer is 2

Similar questions