Math, asked by tanupriya2, 4 months ago

-4 3/2. +. 2 7/12. pls tell sum​

Answers

Answered by Anonymous
2

\LARGE{\underline{\underline{\pink{\sf{Required \: Answer:–}}}}}

\rightarrow  - 4 \frac{3}{2}  + 2 \frac{7}{12}

\rightarrow   \frac{ - 11}{2}  +  \frac{31}{12}

\rightarrow  \frac{ - 66 + 31}{12}

\rightarrow   \frac{ -  35}{12}

\rightarrow  - 2 \frac{11}{12}

 \small{ \boxed{ \boxed{ \boxed{ \sf{ \color{pink}{hope \: it \: helps}}}}}}

Answered by Agamsain
37

Given :-

  • \rm - 4 \: \dfrac{3}{2} \; \; + \; \; 2 \: \dfrac{7}{12}

To Find :-

  • \rm - 4 \: \dfrac{3}{2} \; \; + \; \; 2 \: \dfrac{7}{12} = ?

Explanation :-

As above given, the fractions are in Mixed Fraction and in order to find their sum we need t change them into Improper Fraction.

\rm \implies - 4 \: \dfrac{3}{2} = \dfrac{- 4 \times 2 + 3}{2} = \bold { - \dfrac{11}{2} }

\rm \implies 2 \: \dfrac{7}{12} = \dfrac{2 \times 12 + 7}{12} = \bold { \dfrac{31}{12} }

Now Finding their sum,

\rm \implies - \dfrac{11}{2} + \dfrac{31}{12}

\rm \implies \dfrac{(6 \times - 11) + (1 \times 31)}{12}

\rm \implies \dfrac{(- 66 + 31)}{12}

\underline { \boxed { \bf \implies \dfrac{- 35}{12} \qquad OR \qquad -2 \dfrac{11}{12} }}  

Hence, the sum of -11 /2 and 31/12 is -35/12.

――――――――――――――――――――――――

➤ More To Know

――――――――――――――――――――――――

  • Fraction - In simple words, the ratio of the two numbers is called a fraction. A fraction can represent part of a whole.

  • Proper Fraction - When the numerator is less than Denominator then the fraction is called Proper Fraction.

  • Improper Fraction - When the numerator is greater than Denominator then the fraction is called Improper Fraction.

  • Mixed Fraction - It is an improper function, which is written as a combination of a whole number and a fraction.

  • How to convert a mixed fraction into an improper fraction - To convert a mixed fraction into improper fraction first we multiply the denominator of the proper fraction to the whole number attach with it and then we add the numerator.

@Agamsain

Similar questions