Math, asked by purushotham570, 11 months ago

4 + 3√5 / 4 - 3√5 = a - b√5​

Answers

Answered by DaIncredible
6

Answer:

 \bf a =  \frac{61}{29}  \:  \: and \: b =  - \frac{24}{29}  \\

Step-by-step explanation:

 \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = a - b \sqrt{5}  \\

L.H.S,

Rationalizing the denominator we get:

 =  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  \times  \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }  \\  \\  =  \frac{ {(4)}^{2}  +  {(3 \sqrt{5} ) + 2.4.3 \sqrt{5} } }{ {(4)}^{2} -  {(3 \sqrt{5}) }^{2}  }  \\  \\  =  \frac{16 + 45 + 24 \sqrt{5} }{16 - 45 }  \\  \\  \bf =  \frac{61 + 24 \sqrt{5} }{29}

Comparing L.H.S and R.H.S we get:

 \bf a =  \frac{61}{29}  \:  \: and \:  \: b  = - \frac{24}{29}  \\

Answered by sandy1816
2

 \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = a - b \sqrt{5}  \\  \\  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  \times  \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }  = a - b \sqrt{5}  \\  \\  \frac{16 + 45 + 24 \sqrt{5} }{16 - 45}  = a -b \sqrt{5}  \\  \\  \frac{61 + 24 \sqrt{5} }{ - 29}  = a - b \sqrt{5}  \\  \\   - \frac{61}{29}  -  \frac{24}{29}  \sqrt{5}  = a -b \sqrt{5}

comparing both sides we get

a = - \frac{61}{29}  \:  \:  \:  \: and \:  \:  \: b =   \frac{24}{29}  \\

Similar questions