Math, asked by rekha1972mishra, 7 months ago

4.5 1/2 of ,(7-6-3.5)+2.3*4.05 please give step by step​

Answers

Answered by deepaksarathy027
2

Answer:

We think you wrote:

4.5-1/2*(7.6-3.5)+2.3*4.05

This deals with adding, subtracting and finding the least common multiple.

Overview

Steps

Terms and topics

1 result(s) found

200

2353

​  

=11.76500

See steps

Step by Step Solution:

More Icon

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "4.05" was replaced by "(405/100)". 5 more similar replacement(s)

STEP

1

:

           81

Simplify   ——

           20

Equation at the end of step

1

:

  45  1  76 35     23 81

 (——-(—•(——-——)))+(——•——)

  10  2  10 10     10 20

STEP

2

:

           23

Simplify   ——

           10

Equation at the end of step

2

:

  45  1  76 35     23 81

 (——-(—•(——-——)))+(——•——)

  10  2  10 10     10 20

STEP

3

:

           7

Simplify   —

           2

Equation at the end of step

3

:

  45  1  76 7    1863

 (——-(—•(——-—)))+————

  10  2  10 2    200  

STEP

4

:

           38

Simplify   ——

           5  

Equation at the end of step

4

:

  45  1  38 7    1863

 (——-(—•(——-—)))+————

  10  2  5  2    200  

STEP

5

:

Calculating the Least Common Multiple

5.1    Find the Least Common Multiple

     The left denominator is :       5  

     The right denominator is :       2  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

5 1 0 1

2 0 1 1

Product of all  

Prime Factors  5 2 10

     Least Common Multiple:

     10  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 2

  Right_M = L.C.M / R_Deno = 5

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      38 • 2

  ——————————————————  =   ——————

        L.C.M               10  

  R. Mult. • R. Num.      7 • 5

  ——————————————————  =   —————

        L.C.M              10  

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

38 • 2 - (7 • 5)     41

————————————————  =  ——

       10            10

Equation at the end of step

5

:

  45     1   41      1863

 (—— -  (— • ——)) +  ————

  10     2   10      200  

STEP

6

:

           1

Simplify   —

           2

Equation at the end of step

6

:

  45     1   41      1863

 (—— -  (— • ——)) +  ————

  10     2   10      200  

STEP

7

:

           9

Simplify   —

           2

Equation at the end of step

7

:

  9    41     1863

 (— -  ——) +  ————

  2    20     200  

STEP

8

:

Calculating the Least Common Multiple

8.1    Find the Least Common Multiple

     The left denominator is :       2  

     The right denominator is :       20  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 2 2

5 0 1 1

Product of all  

Prime Factors  2 20 20

     Least Common Multiple:

     20  

Calculating Multipliers :

8.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 10

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

8.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      9 • 10

  ——————————————————  =   ——————

        L.C.M               20  

  R. Mult. • R. Num.      41

  ——————————————————  =   ——

        L.C.M             20

Adding fractions that have a common denominator :

8.4       Adding up the two equivalent fractions

9 • 10 - (41)     49

—————————————  =  ——

     20           20

Equation at the end of step

8

:

 49    1863

 —— +  ————

 20    200  

STEP

9

:

Calculating the Least Common Multiple

9.1    Find the Least Common Multiple

     The left denominator is :       20  

     The right denominator is :       200  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 2 3 3

5 1 2 2

Product of all  

Prime Factors  20 200 200

     Least Common Multiple:

     200  

Calculating Multipliers :

9.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 10

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

9.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      49 • 10

  ——————————————————  =   ———————

        L.C.M               200  

  R. Mult. • R. Num.      1863

  ——————————————————  =   ————

        L.C.M             200  

Adding fractions that have a common denominator :

9.4       Adding up the two equivalent fractions

49 • 10 + 1863     2353

——————————————  =  ————

     200           200  

Final result :

 2353            

 ———— = 11.76500  

 200              

Terms and topics

More Icon

Adding subtracting finding least common multiple

Reducing fractions to lowest terms

Step-by-step explanation:

Similar questions