Math, asked by Aracelyuwu41, 9 months ago

4√81x^8y^16+√36x^4y^8

Answers

Answered by ar5122131
1

Step-by-step explanation:

Use n√ax=axnaxn=axn to rewrite √36x4y36x4y as (36x4y)12(36x4y)12.

4√81x16+(36x4y)12⋅8481x16+(36x4y)12⋅8

Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.

Apply the product rule to 36x4y36x4y.

4√81x16+(36x4)12y12⋅8481x16+(36x4)12y12⋅8

Apply the product rule to 36x436x4.

4√81x16+3612(x4)12y12⋅8481x16+3612(x4)12y12⋅8

Simplify the expression.

Rewrite 3636 as 6262.

4√81x16+(62)12(x4)12y12⋅8481x16+(62)12(x4)12y12⋅8

Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.

4√81x16+62(1/2)(x4)12y12⋅8481x16+62(12)(x4)12y12⋅8

Cancel the common factor of 22.

Cancel the common factor.

4√81x16+62(12)(x4)12y12⋅8481x16+62(12)(x4)12y12⋅8

Rewrite the expression.

4√81x16+61(x4)12y12⋅8

Simplify the expression.

Evaluate the exponent.

4√81x16+6(x4)12y12⋅8481x16+6(x4)12y12⋅8

Multiply the exponents in (x4)12(x4)12.

Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.

4√81x16+6x4(12)y12⋅8481x16+6x4(12)y12⋅8

Cancel the common factor of 22.

Factor 22 out of 44.

4√81x16+6x2(2)12y12⋅8481x16+6x2(2)12y12⋅8

Cancel the common factor.

4√81x16+6x2⋅212y12⋅8481x16+6x2⋅212y12⋅8

Rewrite the expression.

4√81x16+6x2y12⋅8481x16+6x2y12⋅8

Multiply 88 by 66.

4√81x16+48x2y12481x16+48x2y12

Factor 3x23x2 out of 81x16+48x2y1281x16+48x2y12.

Factor 3x23x2 out of 81x1681x16.

4√3x2(27x14)+48x2y1243x2(27x14)+48x2y12

Factor 3x23x2 out of 48x2y1248x2y12.

4√3x2(27x14)+3x2(16y12)43x2(27x14)+3x2(16y12)

Factor 3x23x2 out of 3x2(27x14)+3x2(16y12)3x2(27x14)+3x2(16y12).

4√3x2(27x14+16y12)43x2(27x14+16y12)

Rewrite 3x2(27x14+16y12)3x2(27x14+16y12) as x2⋅(3(27(x7)2+16y12))x2⋅(3(27(x7)2+16y12)).

Tap for fewer steps...

Reorder 33 and x2x2.

4√x2⋅3(27x14+16y12)4x2⋅3(27x14+16y12)

Rewrite x14x14 as (x7)2(x7)2.

4√x2⋅3(27(x7)2+16y12)4x2⋅3(27(x7)2+16y12)

Add parentheses.

4√x2⋅(3(27(x7)2+16y12))4x2⋅(3(27(x7)2+16y12))

Pull terms out from under the radical.

4(x√3(27(x7)2+16y12))4(x3(27(x7)2+16y12))

Multiply the exponents in (x7)2(x7)2.

Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.

4(x√3(27x7⋅2+16y12))4(x3(27x7⋅2+16y12))

Multiply 77 by 22.

4(x√3(27x14+16y12))

I hope it helps u

please mark me for my hard work

Similar questions