Math, asked by Jeelpatel0703, 2 months ago


4. A cuboid is of dimensions 60 cm x 54 cm x 30 cm. How many small cubes with side
6 cm can be placed in the given cuboid?​

Answers

Answered by TheBrainliestUser
84

Answer:

  • 450 small cubes with side 6 cm can be placed in the given cuboid.

Step-by-step explanation:

Given that:

  • A cuboid is of dimensions 60 cm x 54 cm x 30 cm.

To Find:

  • How many small cubes with side 6 cm can be placed in the given cuboid?

Formula used:

  • Volume of a cuboid = (Length x Breadth x Height)
  • Volume of a cube = (side x side x side)

Finding the volume of a cuboid:

⟶ Volume of a cuboid = (60 cm x 54 cm x 30 cm)

⟶ Volume of a cuboid = 97200 cm³

Finding the volume of a cube of side 6 cm:

⟶ Volume of a cube = (6 cm x 6 cm x 6 cm)

⟶ Volume of a cube = 216 cm³

Finding the number of cubes placed in the cuboid:

⟶ Number of cubes = (Volume of cuboid)/(Volume of cube)

⟶ Number of cubes = (97200 cm³)/(216 cm³)

⟶ Number of cubes = 450

Answered by Anonymous
293

Answer:

  \large\underline{\sf{\pmb{Given}}}

  • ➠ A cuboid is of dimensions 60 cm x 54 cm x 30 cm.

\begin{gathered} \:  \: \end{gathered}

  \large\underline{\sf {\pmb{To \: Find}}}

  • ➠ How many small cubes with side 6 cm can be placed in the given cuboid?

\begin{gathered} \:  \: \end{gathered}

  \large\underline{\sf{ \pmb{Using \: Formula }}}

 \bigstar \: \underline{ \boxed{\sf {Volume \: of  \: a  \: cuboid = (Length  \times  Breadth  \times  Height) }}}

 \bigstar \:  \underline { \boxed{\sf{{Volume \: of  \: a  \: cube = ( {a}^{3} ) }}}}

 \bigstar  \: \underline{ \boxed{\sf{{Required \: number  \: of  \: Cube =  \dfrac{Volume \:  of  \: Cuboid}{volume  \: of \:  the  \: small \:  cube} }}}}

Where

  •  \leadsto \sf{a = Side }

 \begin{gathered} \:  \: \end{gathered}

\large\underline{\sf{ \pmb{Solution}}}

Firstly finding the volume of a cuboid

{ \implies\sf{Volume \: of  \: a  \: cuboid = (Length  \times  Breadth  \times  Height) }}

  • Substituting the values

{\implies \sf{ Volume_{(cuboid) }= (60 cm  \times 54 cm  \times  30 cm) }}

 {\implies \sf { Volume_{(cuboid) }= 97200 \:   {cm}^{3} }}

 \:  \:  \:  \star \:  \underline {\boxed{\sf \purple{{volume  \: of \:  a  \: cuboid  = 97200 \:  {cm}^{3} }}}}  \: \star

\begin{gathered} \:  \: \end{gathered}

Now Finding the volume of a cube

 \implies{\sf{{Volume \: of  \: a  \: cube = ( {a}^{3} ) }}}

  • Substituting the values

{ \implies \sf{Volume_{(cube)} = (6 cm  \times  6 cm  \times  6 cm) }}

{ \implies \sf{Volume_{(cube)} =  216 \: {cm}^{3}  }}

 \:  \:  \:  \star \:  \underline {\boxed{\sf \purple{{Volume  \: of  \: a  \: cube = 216 \:   {cm}^{3} }}}}  \: \star

\begin{gathered} \:  \: \end{gathered}

Finding the number of cubes placed in the cuboid

 {\implies\sf{{Required \: number  \: of  \: Cube =  \dfrac{Volume \:  of  \: Cuboid}{volume  \: of \:  the  \: small \:  cube} }}}

  • Substituting the values

 \implies \sf Number \:  of \:  cubes =  \dfrac{97200}{216}

\implies \sf Number \:  of \:  cubes =   \cancel\dfrac{97200}{216}

  \implies\sf{Number  \: of  \: cubes = 450}

  \:  \:  \:  \large \star \:  \underline {\boxed{\sf \purple{Number  \: of  \: cubes =   {450}}}}  \: \star

\begin{gathered} \:  \: \end{gathered}

 \large\underline{ \sf{\pmb{ Therefore}}}

  • Total 450 small cubes with side 6 cm can be placed in the given 60 cm x 54 cm x 30 cm cuboid.

\begin{gathered} \:  \: \end{gathered}

 \large \underline{\sf{ \pmb{Additional  \: Information }}}

\begin{gathered}\begin{gathered}\bigstar \: \bf\underline{More \: Useful \: Formulae } \: \bigstar  \\ \begin{gathered}{\boxed{\begin{array} {cccc}{\sf{{\leadsto TSA \: of \: cube \: = \: 6(side)^{2}}}} \\  \\{\sf{{\leadsto LSA \: of \: cube \:= \: 4(side)^{2}}}}  \\  \\{\sf{{\leadsto Volume \: of \: cube \: = \: (side)^{3}}}} \\  \\ {\sf{{\leadsto Diagonal \: of \: cube \: = \: \sqrt(l^{2} + b^{2} + h^{2}}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: cube \: = \: 4(l+b+h)}}} \\   \\ {\sf{{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}} \\  \\ {\sf{{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}} \\  \\{\sf{{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}} \\  \\ {\sf{{\leadsto Diameter \: of \: circle \: = \: 2r}}} \\  \\ {\sf{{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}} \\  \\ {\sf{{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}} \\  \\ {\sf{{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}} \\  \\{\sf{{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}\end{array}}}\end{gathered}\end{gathered}\end{gathered}

Similar questions