4 cos 12 cos 48 cos 72 = cos 36
Answers
Answered by
103
4cos12°cos48°cos72°
=2(2cos12°cos48°)cos72°
=2[cos(12°+48°)+cos(12°-48°)]cos72°
=2(cos60°+cos36°)cos72°
=2cos60°cos72°+2cos36°cos72°
=2×1/2×cos72°+[cos(36°+72°)+cos(36°-72°)]
=cos72°+cos108°+cos36°
=2cos(72°+108°)/2cos(72°-108°)/2+cos36°
=2cos90°cos18°+cos36°
=cos36° (Proved)
[∵, cos90°=0]
=2(2cos12°cos48°)cos72°
=2[cos(12°+48°)+cos(12°-48°)]cos72°
=2(cos60°+cos36°)cos72°
=2cos60°cos72°+2cos36°cos72°
=2×1/2×cos72°+[cos(36°+72°)+cos(36°-72°)]
=cos72°+cos108°+cos36°
=2cos(72°+108°)/2cos(72°-108°)/2+cos36°
=2cos90°cos18°+cos36°
=cos36° (Proved)
[∵, cos90°=0]
Answered by
51
Answer and explanation:
To prove :
Proof :
Taking LHS,
Using identity,
Using identity,
=RHS
Hence proved.
Similar questions