Prove that sinA + sin3A + sin5A + sin7A / cosA + cos3A + cos5A + cos7A = tan4A
Answers
Answered by
220
sinA+sin3A+sin5A+sin7A/cosA+cos3A+cos5A+cos7A
=(sinA+sin7A)+(sin3A+sin5A)/(cosA+cos7A)+(cos3A+cos5A)
=(2sin4Acos3A+2sin4AcosA)/(2cos4Acos3A+2cos4AcosA)
=2sin4A(cos3A+cosA)/2cos4A(cos3A+cosA)
=sin4A/cos4A
=tan4A (Proved)
=(sinA+sin7A)+(sin3A+sin5A)/(cosA+cos7A)+(cos3A+cos5A)
=(2sin4Acos3A+2sin4AcosA)/(2cos4Acos3A+2cos4AcosA)
=2sin4A(cos3A+cosA)/2cos4A(cos3A+cosA)
=sin4A/cos4A
=tan4A (Proved)
Answered by
58
To prove:
Solution:
Hence proved.
“Sine, cosine and tangent” are main functions in trigonometry. We are mainly derived this functions using formulas. ‘Trigonometric functions’ have been ‘extended as functions’ of a “real or complex variable”, which are today ‘pervasive in all mathematics’.
Similar questions
Computer Science,
8 months ago
Math,
8 months ago
Hindi,
8 months ago
Hindi,
1 year ago
Chemistry,
1 year ago