Math, asked by anasgour75, 1 year ago

4 cos square 60°+4 sin square 45°-sin square 30°​

Answers

Answered by snehaa2830
18

cos 60° = 1/2

sin 45° = 1/√2

sin 30° =1/2

Now, according to question

4×1/4 + 4 × 1/2 - 1/4.

1 + 2 -1/4

=11/4

Answered by pinquancaro
6

4\cos^2(60^\circ)+4\sin^2(45^\circ)-\sin^2(30^\circ)=\frac{19}{4}

Step-by-step explanation:

Given : Expression  4\cos^2(60^\circ)+4\sin^2(45^\circ)-\sin^2(30^\circ)

To find : Simplify the expression ?

Solution :

Expression  4\cos^2(60^\circ)+4\sin^2(45^\circ)-\sin^2(30^\circ)

Using trigonometric values,

\cos 60=\frac{\sqrt3}{2},\ \sin (45)=\frac{1}{\sqrt2},\ \sin(30)=\frac{1}{2}

Substitute the values in the expression,

=4(\frac{\sqrt3}{2})^2+4(\frac{1}{\sqrt2})^2-(\frac{1}{2})^2

=4(\frac{3}{4})+4(\frac{1}{2})-(\frac{1}{4})

=3+2-\frac{1}{4}

=5-\frac{1}{4}

=\frac{20-1}{4}

=\frac{19}{4}

Therefore, 4\cos^2(60^\circ)+4\sin^2(45^\circ)-\sin^2(30^\circ)=\frac{19}{4}

#Learn more

4 cos square 60 degree + sec square 30 degree minus 2 sin square 45 degree upon sin square 60 degree + cos square 45 degree

https://brainly.in/question/6485681

Similar questions