Math, asked by NavyaMishra, 1 year ago

4/cot^2 30°+ 1/sin^2 60°- cos^2 45°

Answers

Answered by mysticd
115

Answer:

\frac{4}{cot^{2}30\degree}+\frac{1}{sin^{2}60\degree}-cos^{2}45\degree=\frac{13}{6}

Step-by-step explanation:

\frac{4}{cot^{2}30\degree}+\frac{1}{sin^{2}60\degree}-cos^{2}45\degree

 = \frac{4}{(\sqrt{3})^{2}}+\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2}

=\frac{4}{3}+\frac{4}{3}-\frac{1}{2}

=\frac{8+8-3}{6}

=\frac{13}{6}

Therefore,

\frac{4}{cot^{2}30\degree}+\frac{1}{sin^{2}60\degree}-cos^{2}45\degree=\frac{13}{6}

•••♪

Answered by lublana
39

Given:

\frac{4}{cot^2 30^{\circ}}+\frac{1}{sin^260^{\circ}}-cos^2 45^{\circ}

To find:

Value of \frac{4}{cot^2 30}+\frac{1}{sin^260}-cos^2 45

Solution:

\frac{4}{cot^2 30}+\frac{1}{sin^260}-cos^2 45

We know that

cot30^{\circ}=\sqrt{3}

sin60^{\circ}=\frac{\sqrt{3}}{2}

cos45^{\circ}=\frac{1}{\sqrt{2}}

Using the values then we get

\frac{4}{(\sqrt{3})^2}+\frac{1}{(\frac{\sqrt{3}}{2})^2}-(\frac{1}{\sqrt{2}})^2

\frac{4}{3}+\frac{4}{3}-\frac{1}{2}

\frac{4+4}{3}-\frac{1}{2}

\frac{8}{3}-\frac{1}{2}

\frac{16-3}{6}

\frac{13}{6}

\frac{4}{cot^2 30}+\frac{1}{sin^260}-cos^2 45=\frac{13}{6}

Similar questions