Math, asked by vk9605406, 4 months ago

4
Expand the binomial (x/3 + 2/y)^4​

Attachments:

Answers

Answered by Anonymous
6

EXPANSION :

 \mapsto \:  \:  \sf \:  {( \frac{x}{3} +  \frac{2}{y} ) }^{4}

 \implies \sf  ^{4} C_0 {( \frac{x}{3} )}^{4}  +  \:  ^{4}C_1 ({ \frac{x}{3} )}^{3} ( \frac{2}{y} ) +  ^{4} C_2 {( \frac{x}{3} )}^{2} ( \frac{2}{y} ) {}^{2}  + {}^{4} C_3 {( \frac{x}{3} )} {( \frac{2}{y} )}^{3}  +  \: ^{4} C_4 {( \frac{2}{y}) }^{4}  \\

 \implies \sf   {\frac{x}{3} }^{4}  +  \: { \frac{8x ^{3} }{27y}  }+  \frac{8 {x}^{2} }{9 {y}^{2} }   +  \frac{32 \: x}{3  \: {y}^{2} } \: +   \frac{16  }{ {y}^{4} }  \\

CONCEPT BOOSTER :

Binomial theorem :

 \rightsquigarrow { \boxed{\sf \:  {(x + y)}^{n}  =  {}^{n} C_0  \: {x}^{n}  +  {}^{n} C_1 {x}^{n - 1} y +  {}^{n} C_2 {x}^{n - 2}  {y}^{2}  +  \dots +  {}^{n} C_n \:  {y}^{n}  }}\\

{ \underline{━━━━━━━━━━━━━━━━}}

 \small\tt \colorbox{skyblue}{@StayHigh}

Similar questions
Math, 10 months ago