4) Express the following in the form of a+ib,
a, beR i =V-1. State the values of a and b.
i) (1+2i)(-2+i) ii) (1+i)(1-1)-1
i(4+3i)
(2+i)
iv) (3-1) (1+2i)
iii)(1i)
3+2i 3-2i
vì) 2-5i 2+5i
vi) (1+) vii) 21 V-3
ix) (-V5 +21-4)+(1-V-9)+(2+3i)(2 – 3i)
4i8 – 31° +3
x) (2+3i)(2–3i) xi) 3711 _ 1;10 _5
Answers
Answer:
1)
(1+2i)(-2+i)
= -2 + i - 4i + i²
= -2 - 3i - 1
= -3 - 3i
Here
a = -3 and b = -3
2)
(1+i)(1-1)-1i(4 + 3i)(2 +i)
= (1 + i)(0) - 1i(4 + 3i)(2 +i)
= 0 - 1i(4 + 3i)(2 + i)
= -1i(4 + 3i)(2 + i) = (3 - 4i)(2+ i)
= 6 + 3i - 8i - 4i²
= 6 - 5i + 4
= 10 - 5i
Here
a = 10 and b = -5
3)
(1i) (3+2i)(3-2i)
= (i)(3² - i²)
= i(9 + 1)
= 10i = 0 + 10i
Here
a = 0 and b = 10
4)
(3-1)(1+2i)
= 3 + 6i - 1 - 2i
= 2 + 4i
Here
a = 2 and b = 4
5)
21 V-3
= 21√3√-1
= (21√3)i ∵ √(-1) = i
= 0 + (21√3)i
Here
a = 0 and b = (21√3)
Do in the same way others
Answer:
1)
(1+2i)(-2+i)
= -2 + i - 4i + i²
= -2 - 3i - 1
= -3 - 3i
Here
a = -3 and b = -3
2)
(1+i)(1-1)-1i(4 + 3i)(2 +i)
= (1 + i)(0) - 1i(4 + 3i)(2 +i)
= 0 - 1i(4 + 3i)(2 + i)
= -1i(4 + 3i)(2 + i) = (3 - 4i)(2+ i)
= 6 + 3i - 8i - 4i²
= 6 - 5i + 4
= 10 - 5i
Here
a = 10 and b = -5
3)
(1i) (3+2i)(3-2i)
= (i)(3² - i²)
= i(9 + 1)
= 10i = 0 + 10i
Here
a = 0 and b = 10
4)
(3-1)(1+2i)
= 3 + 6i - 1 - 2i
= 2 + 4i
Here
a = 2 and b = 4
5)
21 V-3
= 21√3√-1
= (21√3)i ∵ √(-1) = i
= 0 + (21√3)i
Here
a = 0 and b = (21√3)
Step-by-step explanation:1)