Math, asked by Mysterygirl01, 13 hours ago


4. Find the square roots of the following numbers by the Prime Factorisation Method.
(i) 729
(ii) 400
(iii) 1764
(v) 4096
(V) 7744
(vi) 9604
(vii) 5929
(viii) 9216
(ix) 529
(x) 8100

♦️ no spam
♦️need verfied answer​

Answers

Answered by 231001ruchi
8

(i) 729 = 3 × 3 × 3 × 3 × 3 × 3

√729 = √(3 × 3 × 3 × 3 × 3 × 3)

= 3 × 3 × 3

= 27

==========================

(ii) 400 = 2 × 2 × 2 × 2 × 5 × 5

√400 = √(2 × 2 × 2 × 2 × 5 × 5)

= 2 × 2 × 5

= 20

==========================

(iii) 1764 = 2 × 2 × 3 × 3 × 7 × 7

√1764 = √(2 × 2 × 3 × 3 × 7 × 7)

= 2 × 3 × 7

= 42

==========================

(iv) 4096 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

√4096 = √(2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2)

= 2 × 2 × 2 × 2 × 2 × 2

= 64

==========================

(v) 7744 = 2 × 2 × 2 × 2 × 2 × 2 × 11 × 11

√7744 = √(2 × 2 × 2 × 2 × 2 × 2 × 11 × 11)

= 2 × 2 × 2 × 11

= 88

==========================

(vi) 9604 = 2 × 2 × 7 × 7 × 7 × 7

√9604 = √(2 × 2 × 7 × 7 × 7 × 7)

= 2 × 7 × 7

= 98

==========================

(vii) 5929 = 7 × 7 × 11 × 11

√5929 = √(7 × 7 × 11 × 11)

= 7 × 11

= 77

==========================

(viii) 9216 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3

√9216 = √(2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3)

= 2 × 2 × 2 × 2 × 2 × 3

= 96

===========================

(ix) 529 = 23 × 23

√529 = √(23 × 23)

= 23

===========================

(x) 8100 = 2 × 2 × 3 × 3 × 3 × 3 × 5 × 5

√8100 = √(2 × 2 × 3 × 3 × 3 × 3 × 5 × 5)

= 2 × 3 × 3 × 5

= 90

===========================

THANKS.

Answered by llovelypoisonll
2

∣ ❥Ꭺɴꮪꮃꭼꭱ࿐ ∣

(i) 729

 \sqrt{729}  =  \sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3}

 = 3 \times 3 \times 3

 = 27

ii)400

 \sqrt{400}  =  \sqrt{2 \times 2 \times 2 \times 2}  \times 5 \times 5

 = 2 \times 2 \times 5

 = 20

iii) 1764

 \sqrt{7164}  =  \sqrt{2 \times 2 \times 3 \times 3 \times 7 \times 7}

 = 2 \times 3 \times 7

42

same \: method \: used \: in \: other \: equation \:

thank \: u \:

have \: a \: great \: day \: ahead \:

llovelypoisonll ✨

Similar questions