Math, asked by inshabilal7762, 1 year ago

4. Find the value of x which satisfies the relation log 102 + log10(7x+1) = log10(x+93)

Answers

Answered by anshu384000000000
11
The value of x is 7(ans)
Attachments:
Answered by Syamkumarr
0

Answer:

The value of x = 7

Given problem:

4. Find the value of x which satisfies the relation log 102 + log10(7x+1) = log10(x+93)

[ in given problem the terms might be ㏒₁₀ (2) + ㏒₁₀ (7x+1) = ㏒₁₀(x+93) ]

Step-by-step explanation:  

given that   ㏒₁₀ (2) + ㏒₁₀ (7x+1) = ㏒₁₀(x+93)

from  ㏒(ab) = ㏒a + ㏒ b  

⇒    ㏒₁₀ (2) + ㏒₁₀ (7x+1) = ㏒₁₀(x+93)  

⇒    ㏒₁₀ (2) (7x+1) = ㏒₁₀(x+93)    

⇒     ㏒₁₀ (14x + 2) = ㏒₁₀(x+93)    

⇒               14x + 2 = x + 93       [ cancel ㏒₁₀ ]

                         13x = 91

                             x = 91/13 = 7  

Similar questions