4. If 2 sin theeta - 1 = 0, then prove that
sec theeta + tan theeta = √3.
Answers
Answered by
5
Given :
2sinϴ - 1 = 0
To prove :
secϴ + tanϴ = √3
Proof :
We have ,
=> 2sinϴ - 1 = 0
=> 2sinϴ = 1
=> sinϴ = 1/2
=> sinϴ = sin30°
=> ϴ = 30°
Now ,
=> secϴ + tanϴ = sec30° + tan30°
=> secϴ + tanϴ = 2/√3 + 1/√3
=> secϴ + tanϴ = (2 + 1)/√3
=> secϴ + tanϴ = 3/√3
=> secϴ + tanϴ = √3
Hence proved .
Similar questions