Math, asked by yashsh8958, 6 months ago

4. If a+b=5 and ab = 2, find the value of
(a+b)^2​

Answers

Answered by Anonymous
27

{\huge{\underbrace{\rm{Answer\;\checkmark}}}}

★ Given -

  • a + b = 5
  • ab = 2

★ To Find -

  • (a + b)²
  • a² + b²

★ Solution -

 \mapsto \rm  {(a + b)}^{2}

 \mapsto \rm \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 \mapsto  \boxed{\rm \:  {(a + b)}^{2}  =  {5}^{2}  = 25}

&

 \mapsto \rm \: 25 =  {a}^{2}  +  {b}^{2}  + 2ab

 \mapsto \rm \: 25 =  {a}^{2}  +  {b}^{2}  + 2 \times 2

 \mapsto \rm \: 25 - 4 =  {a}^{2}  +  {b}^{2}

 \mapsto    \boxed{\rm \:  {a}^{2}  +  {b}^{2}  = 21}

_________________________

Answered by Anonymous
16

★ ANSWER:-

★ Given :-

a + b = 5

ab = 2

★ To Find :-

  • (a + b)²
  • a² + b²

★ Solution :-

{(a + b)}^{2}

↦(a+b)2

{(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab

↦(a+b)2=a2+b2+2ab

{(a + b)}^{2} = {5}^{2} = 25}

↦(a+b)2=52=25

&

25 = {a}^{2} + {b}^{2} + 2ab

↦25=a2+b2+2ab

25 = {a}^{2} + {b}^{2} + 2 \times 2↦25=a2+b2+2×2

25 - 4 = {a}^{2} + {b}^{2}

↦25−4=a2+b2

{a}^{2} + {b}^{2} = 21}

↦a2+b2=21

HOPE IT WILL HELP YOU

Similar questions