Math, asked by shaikhashra16, 3 months ago

4) If roots of a quadratic equation 3y2+ ky+ 12= 0 are real and equal then

find the value of ‘k’.​

Answers

Answered by HaRdiK4uu
14

Answer:

for \: equal \: roots \: \\ d = 0 \\  {b}^{2}  - 4ac = 0 \\  {k}^{2}  - 4(3)(12) = 0 \\  {k}^{2}  - 144 = 0 \\ k =  \sqrt{144}  = 12 \\ therefore \\ k = 12

Answered by 4685adityaraha
5

Answer:

k= 12 or k= -12

Step-by-step explanation:

3y^2 + ky + 12 = 0

a = 3, b = k, c = 12

b^2 - 4ac = 0                                  _ _ _ _ _( given )

k^2\\ - 4(3)(12) = 0

k^2 - (12 x 12) = 0

∴        k^2 - 144 = 0

∴                 k^2 = 144

∴                 k  = \sqrt144                 _ _ _ _ _( taking square roots of both sides)

∴                 k  = ±12

∴        k = 12               OR               k = -12

Similar questions