Math, asked by yashvi042, 1 year ago

4.
If x+y, yuz, z+x are in the ratio 6:7:8 and x + y + z =14 then the value of x is
(a) 6
(b) 7
(c) 8
(d) 10​

Answers

Answered by lublana
19

Answer:

x= \frac{14}{3}

Step-by-step explanation:

We are given that

(x+y):(y+z):(z+x)=6:7:8

x+y+z=14

We have to find the value of x.

According to question

\frac{x+y}{y+z}=\frac{6}{7}

7x+7y=6y+6z

7x+7y-6y=6z

7x+y=6z  (equation I)

\frac{x+y}{z+x}=\frac{6}{8}

8x+8y=6z+6x

8x-6x+8y=6z

2x+8y=6z  (equation II)

Subtract equation I from equation II

-5x+7y=0

7y=5x

x=\frac{7}{5}y

Substitute the value of y in equation I

\frac{7\times 7y}{5}+y=6z

\frac{49y+5y}{5\times 6}=z

z=\frac{9y}{5}=\frac{9y}{5}

Substitute the values

\frac{7y}{5}+y+\frac{9y}{5}=14

\frac{7y+5y+9y}{5}=14

\frac{21y}{5}=14

y=\frac{14\times 5}{21}=\frac{10}{3}

Substitute the value

x=\frac{7\times 10}{5\times 3}=\frac{14}{3}

Hence, the value of x= \frac{14}{3}

Similar questions