Math, asked by reenakhare25, 3 months ago

4.
In a triangle, the sum of two angles is equal to
the third angle, if the difference between two
angles is 30°, the angles are
(1) 15°, 45°, 75° (2) 20°, 50°, 80°
(3) 30°, 60°, 90° (4) 45°, 45°, 90°
If the given system of equations has infinite​

Answers

Answered by sia1234567
2

\huge\bold\green{answer- }

\star\fbox\blue{given - }

 \pink{ \star \: difference \: of \: two \:angles \:  = 30 \degree }

\star\fbox\blue{find- }

  \pink{\star \: all \: the \: angles \: of \: a \: \triangle}

\huge\tt\underline \red{solution- }

 \blacktriangleright \: as \: we \: know \: that \: -  \\  \purple{ \leadsto \: sum \: of \: all \: the \: \angle \: es \: of \: a \:  \triangle = 180 \degree}

 \longmapsto \angle \: a \:  +  \angle \: b \:  =  \angle \: c \:

 \longmapsto \angle \: a \:  -  \angle \: b \:  = 30 \degree

2c = 180 \degree \\ \\  c =  \frac{180}{2}  \\  \\  = 90 \degree

  \longmapsto\angle \: a -  \angle \: b = 30 \degree

 \longmapsto \angle \: a +  \angle \: b \:  =  \angle \: 90 \degree

2a =  \frac{120}{2}  \\  \\ a = 60 \degree

 \angle \: b \:  =180 \degree - ( 90 \degree + 60 \degree )\\  =180 \degree - 150 \degree \\  = 30 \degree

 \therefore  \\  \red{\hookrightarrow \angle \: a =  60 \degree} \\   \red{\hookrightarrow \angle \: b = 30 \degree} \\\red{ \hookrightarrow \angle \: c \:  = 90 \degree}

_______________________________

Similar questions