4 IN triangle PQR, S is a point on QR such that PS is parallel toQR. If the area of triangle PQS is 56 cm?, PS = 8 cm and the
ratio of the areas of APQR to area of APQS is 4:3, then find the length of the side QR.
Answers
Answered by
0
Answer:
Given that:
QP=8cm,PR=6cm and SR=3cm
(I) In △PQR and △SPR
∠PRQ=∠SRP (Common angle)
∠QPR=∠PSR (Given that)
∠PQR=∠PSR (Properties of triangle )
∴△PQR∼△SPR (By AAA)
(II)
SP
PQ
=
PR
QR
=
SR
PR
(Properties of similar triangles)
⇒
SP
8cm
=
3cm
6cm
⇒SP=4cm and
⇒
6cm
QR
=
3cm
6cm
⇒QR=12cm
(III)
ar(△SPR)
ar(△PQR)
=
SP
2
PQ
2
=
4
2
8
2
=4
Similar questions