Math, asked by santoshpatil91585644, 1 month ago

4 ने विभाज्य असलेल्या कोणत्याही तीन अंकी तीन संख्या लिहा

Answers

Answered by Anonymous
23

♥️♥️ \huge\red{A}\pink{N}\orange{S}\green{W}\blue{E}\gray{R} ♥️♥️

4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , 40_______✌️

Answered by Anonymous
17

अविभाज्य संख्या : ज्या संख्येला १ किंवा ती स्वतः यांखेरीज दुसऱ्या कोणत्याही संख्येने भाग जात नाही, तिला 'अविभाज्य संख्या' म्हणतात. उदा., २, ३, ५, ७, ११, १३ इ. आणि १ वगळता बाकीच्या संख्यांना 'संयुक्त संख्या' म्हणतात. उदा., ४, ६, ८, ९,...इ. १, २, ३,... इ. धन पूर्णांकांना 'स्वाभाविक संख्या' म्हणतात. प्रस्तुत लेखात सर्वत्र 'संख्या' म्हणजे 'स्वाभाविक संख्या' असे समजावे. संख्यांचे एकूण तीन गट पडतात :

ह्या गटात १ ही फक्त एकच संख्या आहे,

ज्या संख्यांना १ किंवा ती स्वतः ह्यांच्याशिवाय दुसऱ्या कोणत्याही संख्येने भाग जात नाही, अशा संख्या,

याव्यतिरिक्त उरलेल्या सर्व स्वाभाविक संख्या. सर्व स्वाभाविक संख्यांच्या संचाचा, अविभाज्य संख्यांचा संच हा युक्त (मूळ संचातील सर्व घटकांचा समावेश नसलेला) उपसंच आहे, हे उघड आहे. हा संच अनंत आहे हे यूक्लिड यांनी अप्रत्यक्ष सिद्धतापद्धतीने सिद्ध केले. समजा, प१, प२, ..., पक इतक्यात अविभाज्य संख्या आहेत. आता ल ही संख्या अशी घ्या की, ल= प१प२ ...पक+१ ही संख्या १ नसल्याने दोनच पर्याय संभवतात :

(अ) ल ही अविभाज्य असले किंवा

(आ) ती संयुक्त असेल.

जर ल ही अविभाज्य असेल, तर ही संख्या आरंभीच्या प१, प२, ..., पक ह्या सर्व अविभाज्य संख्यांहून मोठी असल्याने 'इतक्याच अविभाज्य संख्या आहेत' हे आरंभीचे गृहीत चूक होईल; म्हणजेच अविभाज्य संख्या अनंत आहेत, हे सिद्ध होते. जर ल ही संख्या संयुक्त आहे असे मानले, तर तिला प१, प२, ..., पक यांपैकी कोणत्याच अविभाज्य संख्येने निःशेष भाग जात नसल्याने आणखी एका अविभाज्य संख्येने तिला भाग गेला पाहिजे. म्हणजे पुन्हा 'इतक्याच अविभाज्य संख्या आहेत' हे गृहीत चूक ठरून मूळ विधान सिद्ध होते. स या दिलेल्या संख्येपर्यंतच्या अविभाज्य संख्या मिळविण्याची एक पद्धत एराटॉस्थीनीझ (इ. स. पू. २७६ ?-१९५ ?) यांनी दिली आहे. २ पासून स पर्यंतच्या संख्या क्रमाने लिहाव्यात.

नंतर २ सोडून २ च्या पाढ्यातील सर्व संख्या म्हणजे ४, ६, ८,... ह्या खोडाव्यात. मग २ नंतरची ३ ही अविभाज्य संख्या न खोडलेली अशी दिसेल. त्यानंतर ३ सोडून ३ च्या पाढ्यातील सर्व संख्या खोडाव्यात. मग ५ ही अविभाज्य संख्या मिळेल. इत्यादी. ह्या पद्धतीला 'एराटॉस्थीनीझ चाळणी' असे अन्वर्थक नाव आहे. दिलेल्या कोणत्याही संख्येची अविभाज्य संख्यांच्या अवयवांत विघटन करता येते आणि अवयवांचा क्रम सोडला तर हे विघटन एकाच प्रकारे करता येते, हा एक महत्त्वाचा सिद्धांत असून त्याला 'अनन्य अवयवीकरण-प्रमेय' असे म्हणतात. अविभाज्य संख्या मिळविण्याकरिता सूत्र मांडण्याच्या अनेक गणितज्ञांनी प्रयत्न केला. परंतु अविभाज्य संख्यांना सूत्रात बसविण्याचे सर्व पर्यत्न असफल झालेले आहेत. पुढील सूत्रे ह्या दृष्टीने मांडण्यात आली होती.

फेर्मा संख्या : २२प + १, [प=०, १, २,...] या संख्यांना फेर्मा संख्या म्हणतात. या संख्या अविभाज्य असाव्यात अशी फेर्मा (१६०१-६५) या फ्रेंच गणितज्ञांची कल्पना होती. प= ०, १, २, ३, २ घेतल्यास मिळणाऱ्या संख्या ३, ५, १७, २५७, ६५,५३७ या अविभाज्य आहेत. पण प=५ घेतल्यास मिळणारी संख्या ४,२९,४९,६७,२९७ = ६४१ X ६७,००,४१७ ही संयुक्त आहे. इतकेच नव्हे, तर इतरही पुष्कळ फेर्मा संख्या संयुक्त आहेत, असे आढळून आले.

प२-प+४१ किंवा प२-७९प+१६०१, [प=०, १, २,...]या सूत्रांमुळे काही अविभाज्य संख्यांच्या मालिका मिळतात. पण त्यांवरून मिळणाऱ्या सर्वच संख्या अविभाज्य नाहीत.

l hope it will help u ☺️✌️☺️

Similar questions