Math, asked by Godawari, 1 year ago

4 power 2x-1- 16
power x-1 =384

Answers

Answered by sivaprasath
18

Answer:

x =\frac{11}{4}

Step-by-step explanation:

Given :

To find the value of x, if

4^{2x-1} - 16^{x - 1} = 384

Solution :

4^{2x-1} - 16^{x - 1} = 384

4^{2x-1} - 4^{2(x - 1)} = 384

4^{2x-1} - 4^{2x - 2} = 384

4^{2x-2+1} - 4^{2x - 2} = 384

⇒  4(4^{2x-2}) - 4^{2x - 2} = 384

⇒  4^{2x-2}(4 - 1) = 384

⇒  4^{2x-2}(3) = 384

4^{2x-2} = \frac{384}{3} = 128

4^{2x - 2} = 2^{2(2x-1)} = 128

2^{4x - 4} = 128

2^{4x-4} = 2^7

4x - 4 = 7

4x = 7 + 4 = 11

x =\frac{11}{4}


chandrahas8029: My class teacher told this is wrong
sivaprasath: 11/4 is the correct one ?
AbhijithPrakash: Yup
Answered by AbhijithPrakash
13

Answer:

4^{2x-1}-16^{x-1}=384\quad :\quad x=\dfrac{11}{4}\quad \left(\mathrm{Decimal}:\quad x=2.75\right)

Step-by-step explanation:

4^{2x-1}-16^{x-1}=384

________________________________________

\mathrm{Convert\:}16^{x-1}\mathrm{\:to\:base\:}4

16^{x-1}=\left(4^2\right)^{x-1}

4^{2x-1}-\left(4^2\right)^{x-1}=384

________________________________________

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(4^2\right)^{x-1}=4^{2\left(x-1\right)}

4^{2x-1}-4^{2\left(x-1\right)}=384

________________________________________

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

4^{2x-1}=4^{2x}\cdot \:4^{-1},\:\space4^{2\left(x-1\right)}=4^{2x}\cdot \:4^{-2}

4^{2x}\cdot \:4^{-1}-4^{2x}\cdot \:4^{-2}=384

_________________________________________

\mathrm{Factor}\:4^{2x}4^{-1}-4^{2x}4^{-2}

4^{2x}4^{-1}-4^{2x}4^{-2}

_________________________________________

\mathrm{Factor\:out\:common\:term\:}4^{2x}

=4^{2x}\left(4^{-1}-4^{-2}\right)

4^{2x}\left(4^{-1}-4^{-2}\right)=384

_________________________________________

\mathrm{Divide\:both\:sides\:by\:}4^{-1}-4^{-2}

\dfrac{4^{2x}\left(4^{-1}-4^{-2}\right)}{4^{-1}-4^{-2}}=\dfrac{384}{4^{-1}-4^{-2}}

_________________________________________

Simplify;

4^{2x}=\dfrac{384}{4^{-1}-4^{-2}}

_________________________________________

\mathrm{Simplify\:}\dfrac{384}{4^{-1}-4^{-2}}

\dfrac{384}{4^{-1}-4^{-2}}

_________________________________________

\mathrm{Simplify}\:4^{-1}-4^{-2}

4^{-1}-4^{-2}

_________________________________________

\mathrm{Apply\:exponent\:rule}:\quad \:a^{-1}=\dfrac{1}{a}

4^{-1}=\dfrac{1}{4}

=\dfrac{1}{4}-4^{-2}

_________________________________________

\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\dfrac{1}{a^b}

4^{-2}=\dfrac{1}{4^2}

=\dfrac{1}{4}-\dfrac{1}{4^2}

_________________________________________

=\dfrac{384}{\dfrac{1}{4}-\dfrac{1}{4^2}}

_________________________________________

\mathrm{Join}\:\dfrac{1}{4}-\dfrac{1}{4^2}:\quad \dfrac{3}{16}

=\dfrac{384}{\dfrac{3}{16}}

_________________________________________

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{a}{\dfrac{b}{c}}=\dfrac{a\cdot \:c}{b}

=\dfrac{384\cdot \:16}{3}

_________________________________________

\mathrm{Multiply\:the\:numbers:}\:384\cdot \:16=6144

=\dfrac{6144}{3}

_________________________________________

\mathrm{Divide\:the\:numbers:}\:\dfrac{6144}{3}=2048

_________________________________________

4^{2x}=2048

_________________________________________

\mathrm{Convert\:}4^{2x}\mathrm{\:to\:base\:}2

4^{2x}=\left(2^2\right)^{2x}

\left(2^2\right)^{2x}=2048

________________________________________

\mathrm{Convert\:}2048\mathrm{\:to\:base\:}2

2048=2^{11}

\left(2^2\right)^{2x}=2^{11}

_______________________________________

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(2^2\right)^{2x}=2^{2\cdot \:2x}

2^{2\cdot \:2x}=2^{11}

______________________________________

\mathrm{If\:}a^{f\left(x\right)}=a^{g\left(x\right)}\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)

2\cdot \:2x=11

_____________________________________

Simplify;

4x=11

_____________________________________

\mathrm{Divide\:both\:sides\:by\:}4

\dfrac{4x}{4}=\dfrac{11}{4}

\mathrm{Simplify}

x=\dfrac{11}{4}

____________________________________

\bold{x=\dfrac{11}{4}}

Attachments:
Similar questions