4. Prove that square of a positive integer is of the form 4m or 4m+1 for some
positive integer m.
Answers
☞ Let a be any positive integer and b = 4
Then by using Euclid's algorithm
a = 4q + r __________(eq 1)
Here, r = 0, 1, 2, 3 ..
On putting the above values of r in (eq 1) we get;
a = 4q, 4q + 1, 4q + 2 and 4q + 3
• Since, a is an odd integer.
So, we take a = 4q, 4q + 1and 4q + 3.
_______________________________
a = 4q
• Squaring on both sides.
=> a² = (4q)²
=> 16q²
=> 4(4q²)
[Take 4q² = m]
=> 4m
________________________________
If a = 4q + 1
• Squaring both sides
=> a² = (4q + 1)²
=> 16q² + 1 + 8q
=> 4(4q² + 2q) + 1
[Take m = 4q² + 2q]
=> 4m + 1
________________________________
Ifa = 4q + 3
• Squaring both sides, we have,
=> a² = (4q +3)²
=> 16q² + 9 + 24q
=> 16q² + 24q + 8 + 1
=> 4(4q² + 6q + 2) +1
[Take m = 4q² + 7q + 2]
=> 4m +1
_______________________________
Hence, a is of the form 4m or 4m + 1 for some integer m.
___________ [HENCE PROVED]