Math, asked by ilovefootball257, 10 months ago

(4+ root 5 / 4- root 5) + (4- root 5 / 4+ root 5)

Answers

Answered by rohitbhhattach42
3

Step-by-step explanation:

(4 +√5)/(4 -√5)  + (4 -√5)/(4 +√5)

now dividing and multiplying the first term by (4 +√5) and second term by (4 -√5), we get,

(4 +√5)×(4 +√5)/(4 -√5)×(4 +√5) + (4 -√5)×(4 -√5)/(4 +√5)×(4 -√5)

⇒(4 +√5)²/(16 -5) +  (4 -√5)²/(16 -5)   ( applying (a² -b²) = (a+b)(a -b))

⇒(16 +5 +8√5 +16 +5 - 8√5)/11

⇒42/11

HOPE IT HELPS.........!

Answered by yashaswini3679
2

Step-by-step explanation:

 \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} } +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }

by \:  \: cross \:  \: multiplication

 \frac{ {(4 +  \sqrt{5}) }^{2}  }{ {(4 -  \sqrt{5}) }^{2} }

 \frac{16 + 5 + 8 \sqrt{5} }{16 + 5 - 8 \sqrt{5} }

 \frac{21 + 8 \sqrt{5} }{21 - 8 \sqrt{5} }

rationalising \:  \: the \:  \: denominator

 \frac{21 + 8 \sqrt{5} }{21 - 8 \sqrt{5} }  \times \frac{21 + 8 \sqrt{5} }{21  +  8 \sqrt{5} }

Similar questions