Science, asked by Indranipatil, 6 months ago

4 sin^3 75° - 3cos 15°​

Answers

Answered by hotelcalifornia
0

The value of 4sin^375°-3cos15° is  \frac{1}{\sqrt{2} }  .

Explanation:

Given:

4sin^375°-3cos15°

To find:

The value of 4 sin^375°-3cos15°

Solution:

4sin^375°-3cos15°

Here, sin75° can be simplified as,

sin75°=sin(45°+30°)

        =sin45cos30°+cos45sin

       =\frac{1}{\sqrt{2} } .\frac{\sqrt{3} }{2}+\frac{1}{\sqrt{2} }.\frac{1}{2}

       =\frac{\sqrt{3} +1}{2\sqrt{2} }

sin^375°=(\frac{\sqrt{3} +1}{2\sqrt{2} } )^3

          =\frac{(\sqrt{3}) ^3+3(\sqrt{3})^2+3\sqrt{3}+1  {} }{16\sqrt{2} }

          =\frac{3\sqrt{3} +9+3\sqrt{3}+1  }{16\sqrt{2} }

          =\frac{6\sqrt{3}+10 }{16\sqrt{2} }

          =\frac{2(3\sqrt{3} +5)}{16\sqrt{2} }

          =\frac{3\sqrt{3} +5}{8\sqrt{2}  }

4sin^375°=4(\frac{3\sqrt{3} +5}{8\sqrt{2}  })

4sin^375°=\frac{3\sqrt{3} +5}{2\sqrt{2}  }    

and cos15° can be simplified as,

cos15°=(cos45°-cos30°)

        =cos45cos30°-sin45sin

        =\frac{1}{\sqrt{2} } .\frac{\sqrt{3} }{2} +\frac{1}{\sqrt{2} }.\frac{1}{2}

        =\frac{\sqrt{3}+1}{2\sqrt{2} }

3cos15°=3(\frac{\sqrt{3}+1}{2\sqrt{2} })

Now substitute in the given equation,

4sin^375°-3cos15°=\frac{3\sqrt{3} +5}{2\sqrt{2}  }-3(\frac{\sqrt{3}+1}{2\sqrt{2} })

                         =\frac{3\sqrt{3} +5-3\sqrt{3} -3}{2\sqrt{2} }

                        =\frac{2}{2\sqrt{2} }

4sin^375°-3cos15°=\frac{1}{\sqrt{2} }

So the final answer is \frac{1}{\sqrt{2} }.

 

Similar questions