Math, asked by ParnikaD, 1 year ago

4 sin x sin (pi/3 -x) sin (pi/3+x) = sin 3x ...Prove​

Answers

Answered by MaheswariS
47

Answer:

\bf{4\:sinx\:sin(\pi/3-x)\:sin(\pi/3+x)=sin3x}

Step-by-step explanation:

4 sin x sin (pi/3 -x) sin (pi/3+x) = sin 3x

Formula used:

cos(A-B)-cos(A+B)=2\:sinA\:sinB

cos2A=1-2sin^2A

4\:sinx\:sin(\pi/3-x)\:sin(\pi/3+x)

=2\:sinx\:[2sin(\pi/3-x)\:sin(\pi/3+x)]

=2\:sinx\:[cos((\pi/3-x)-(\pi/3+x))-cos((\pi/3-x)+(\pi/3+x))]

=2\:sinx\:[cos(-2x)-cos(2\pi/3)]

=2\:sinx\:[cos2x-(\frac{-1}{2})]

=2\:sinx\:[cos2x+\frac{1}{2}]

=2\:sinx\:[1-2sin^2x+\frac{1}{2}]

=2\:sinx\:[\frac{3}{2}-2sin^2x]

=2\:sinx(\frac{3}{2})-2sinx(2sin^2x)]

=3\:sinx-4sin^3x

=sin3x

Answered by Sayani022
12

Answer:plz notice the attachment file

Step-by-step explanation:

Attachments:
Similar questions