4 (sin⁴ 30° + cos² 60°) – 3(cos² 45° - sin² 90°) - sin² 60°
Answers
Answered by
1
Answer:
4(1/4+1/4)-3(1/2-1)-3/4
=4*(2/4)+3/2-3/4
=2+1.5-0.75
=3.5-0.75
=2.75=11/4
Answered by
0
Answer:
Step-by-step explanation:
Given :
4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60°
= 4[(1/2)⁴ +(1/2)²] − 3[(1/√2)² −1) −(√3/2)²
[sin 30°= ½ , cos 60°= ½ , cos 45° = 1/√2, sin 90° = 1 , sin 60°= √3/2]
= 4[1/16 + ¼] - 3[½ - 1] - 3/4
= 4 [ (1 + 1×4)/16] - 3 [(1 - 1×2)/2] - ¾
[By taking L.C.M of denominator]
= 4 [ (1+ 4)/16] - 3 [(1 - 2)/2] - 3/4
= 4[5/16] - 3 [ - 1/2 ] - 3/4
= 5/4 + 3/2 - ¾
= 5/4 - ¾ + 3/2
[By rearranging the terms]
= (5 - 3)/4 + 3/2
= 2/4 + 3/2
= ½ + 3/2
= (1+3)/2
= 4 /2 = 2
4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60° = 2
Hence, 4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60°
Similar questions