Math, asked by tanishas1818, 8 months ago

4(sin⁴30°+cos²60°)-3(cos²45°-sin²90°)-sin²60°​

Answers

Answered by putulreddy
1

Answer:

hey mate please mark me as barinliest

Step-by-step explanation:

Given :

4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60°  

= 4[(1/2)⁴ +(1/2)²] −  3[(1/√2)² −1) −(√3/2)²  

[sin 30°= ½ ,   cos 60°= ½ , cos 45° = 1/√2, sin 90° = 1 , sin 60°= √3/2]

= 4[1/16 + ¼] -  3[½ - 1] - 3/4

= 4 [ (1 + 1×4)/16] - 3 [(1 - 1×2)/2] - ¾

[By taking L.C.M of  denominator]

= 4 [ (1+ 4)/16] -  3 [(1 - 2)/2] - 3/4

= 4[5/16] -  3 [ - 1/2 ] - 3/4

= 5/4 + 3/2 - ¾

= 5/4 - ¾ + 3/2

[By rearranging  the terms]

= (5 - 3)/4 + 3/2

= 2/4 + 3/2

= ½ + 3/2

= (1+3)/2

= 4 /2  = 2  

4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60° = 2

Hence, 4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60°

HOPE THIS ANSWER WILL HELP YOU…

Answered by sravyasm
2

Answer:

2

Step-by-step explanation:

4(sin⁴30°+cos²60°)-3(cos²45°-sin²90°)-sin²60°​

=4((\frac{1}{2})⁴+3((\frac{1}{\sqrt{2} })² - (1)

=\frac{(4)(5)}{16}+ \frac{3}{2} - \frac{3}{4}

=\frac{5+6-3}{4}

=\frac{8}{4} =2

Similar questions