Math, asked by rakeshdhandhi, 8 months ago

4 sin5° sin55 sin65º has the values equal to
???​

Answers

Answered by parulsehgal06
0

Answer:

The value of 4sin5° sin55° sin65° = sin 15° - 2sin5°

Step-by-step explanation:

The value of 4sin5° sin55° sin65°

    4sin5° sin55° sin65°

  By the trigonometric product formulas

            sinx° siny° = [cos(x-y)-cos(x+y)]/2

                    sin55° sin65° = [cos(55-65)°-cos(55+65)°]/2

                                           = [cos(-10)°-cos(120)°]/2

                                           = [cos(10)°-cos(90+30)°]/2

                                           = [cos10°-cos30°]/2

                   sin55° sin65°  = [cos10°-(1//2)]/2

         now substitute the above value in 4sin5° sin55° sin65°                        

          4sin5° sin55° sin65° = 4sin5° {[cos10°-(1//2)]/2}

                                            = 2sin5°cos10° - 2(1/2)sin5°

                                            = 2sin5°cos10° - sin5°

      we know that sinx cosy = [sin(x+y)+sin(x-y)]/2

    then sin5°cos10° = [sin(5°+10°)+sin(5°-10°)]/2

                              = [sin15°+sin(-5)°]/2

                              = [sin15°-sin5°]/2

     substitute the above value in 2sin5°cos10° - sin5°      

          4sin5° sin55° sin65° = 2sin5°cos10° - sin5°

                                            = 2{[sin15°-sin5°]}/2 -sin5°

                                            = sin15°-sin5°-sin5° °

                                            = sin 15° - 2sin5°

      Hence, the value of 4sin5° sin55° sin65° = sin 15° - 2sin5°.

 Know more about Trigonometric expression:

https://brainly.in/question/46245903?referrer=searchResults

 https://brainly.in/question/42198701?referrer=searchResults            

           

Answered by ushmagaur
0

Answer:

The value of 4sin5° sin55° sin65° is sin115° + sin15° - sin65°.

Step-by-step explanation:

Recall the identities,

(i) -2sinA sinB = cos(A + B) - cos(A - B)

This implies, 2sinA sinB = cos(A - B) - cos (A + B).

(ii) 2cosA sinB = sin(A + B) - sin(A - B)

To find:-

The value of 4sin5° sin55° sin65°.

Consider the given trigonometric function as follows:

4sin5° sin55° sin65°

Rewrite as follows:

2(2sin5° sin55°) sin65°

Using the identity (i), simplify the function inside the bracket as follows:

⇒ 2(cos(5 - 55)° - cos(5 + 55)°) sin65°

⇒ 2(cos(-50°) - cos60°) sin65°

Since cos(-x) = cosx

⇒ 2(cos50° - cos60°) sin65°

⇒ 2cos50° sin65° - 2cos60° sin65°

⇒ 2cos50° sin65° - 2(1/2) sin65° (Since cos60° = 1/2)

⇒ 2cos50° sin65° - sin65°

Now, using the identity (ii) to simplify further.

⇒ [sin(50 + 65)° - sin(50 - 65)°] - sin65°

⇒ [sin115° - sin(-15)°] - sin65°

As we know,

sin(-x) = -sinx

⇒ [sin115° + sin15°] - sin65°

⇒ sin115° + sin15° - sin65°

Therefore, the value of 4sin5° sin55° sin65° is sin115° + sin15° - sin65°.

#SPJ3

Similar questions