4.Solution of the differential equation
sec)^2 xtanydx+ ( sec]^2 ytanxdy=0 is
Is
Answers
EXPLANATION.
⇒ sec²x tan y dx + sec²y tan x dy = 0.
As we know that,
We can write equation as,
⇒ sec²y tan x dy = - sec²x tan y dx.
⇒ sec²y dy/tan y = - sec²x dx/tan x.
Integrate both sides of the equation, we get.
⇒ ∫(sec²ydy)/(tan y) = - ∫(sec²xdx)/(tan x).
By using substitution method, we get.
Let we assume that,
⇒ tan y = t.
Differentiate w.r.t y, we get.
⇒ sec²ydy = dt.
⇒ tan x = z.
Differentiate w.r.t x, we get.
⇒ sec²xdx = dz.
Put the values in the equation, we get.
⇒ ∫dt/t = - ∫dz/z.
⇒ ㏑|t| = - ㏑|z| + C.
Put the value of t = tan y and z = tan x in the equation, we get.
⇒ ㏑|tan y| = - ㏑|tan x| + C.
⇒ ㏑|tan y| + ㏑|tan x| = C.
MORE INFORMATION.
Differential equation of Homogenous type Or f(y/x) = 0.
To solve the homogenous differential equation dy/dx = f(x, y)/g(x, y) , substitute y = vx and So, dy/dx = v + x dv/dx.
Thus, v + x dv/dx = f(v) ⇒ dx/x = dv/f(v) - v.
Therefore solution is ∫dx/x = ∫dv/f(v) - v + C.