4. Solve for x :
tan-1
(4*) -tan-1x = 0; x > 0
Answers
Answered by
2
Answer:
Let cot
−1
(x)=θ
⇒cotθ=x
Now, we have
tan(−π+θ)=−tan(π−θ)
⇒tan(−π+θ)=tanθ=
cotθ
1
⇒tan(−π+θ)=
x
1
⇒−π+θ=tan
−1
x
1
⇒−π+cot
−1
x=tan
−1
x
1
∴tan
−1
x
1
=−π+cot
−1
x
Similar questions