Math, asked by arya1404, 10 months ago

4. The outer measurements of a cuboidal tank
is length 5 m, breadth 4 m and height 2 m.
Square tiles of length 20 cm are to be fixedon its outer surfaces except the base. Find
the number of tiles required. Find the costof tiles if a box of 10 tiles costs = ₹250.​

Answers

Answered by rowan69
4

10 tiles =250/–

1 tile=250/10

1 tile =25/–

total surface area of the tank=( lb+bh+hl)

= (5×4+4×2+2×5)

= (20+8+10)

= 38m³

we have to change meters to centimetres

that is ,

38×100=3800 cm

now find area of each tile:

area of square = a²=20²=4000

area of each tile is 4000

we have to divide 3800/2

the answer will be 1900

so it would take 1900 tiles

hope it helps you please mark me as brainliest

Answered by Anonymous
20

\huge\red{\underline{\underline{\pink{Ans}\red{wer:}}}}

\sf{1400 \ tiles \ of \ Rs \ 35000 \ are \ required.}

\sf\orange{Given:}

\sf{For \ cuboidal \ tank,}

\sf{\implies{Length (l)=5 \ m}}

\sf{\implies{Breadth (b)=4 \ m}}

\sf{\implies{Height (h)=2 \ m}}

\sf{For \ square \ tiles,}

\sf{Side(l)=20 \ cm}

\sf{Each \ box \ of \ tiles \ cost=Rs \ 250}

\sf\pink{To \ find:}

\sf{\implies{Number \ of \ tiles \ required}}

\sf{\implies{Cost \ of \ tiles}}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{Outer \ surface \ area \ of \ cuboidal}}

\sf{tank \ except \ base=2(bh+lh)+lb}

\sf{=2(4×2+5×2)+4×5}

\sf{=2(8+10)+20}

\sf{=2(18)+20}

\sf{=36+20}

\sf{=56 \ sq \ m}

\sf{For \ square \ tile,}

\sf{1cm=0.01m}

\sf{\therefore{20cm=0.2m}}

\sf{Lateral \ surface \ area=0.2×0.2}

\sf{=0.04 \ m^{2}}

\sf{Number \ of \ tiles \ required}

\sf{=\frac{Outer \ surface \ area \ of \ cuboidal}{Lateral \ surface \ area \ of \ tile}}

\sf{=\frac{56}{0.04}}

\sf{=\frac{5600}{4}}

\sf{=1400}

\sf{\therefore{1400 \ tiles \ are \ required.}}

\sf{1 \ box \ has \ 10 \ tiles}

\sf{\frac{1400}{10}=140 \ boxes}

\sf{Cost \ of \ one \ box=Rs \ 250}

\sf{\therefore{Cost \ of \ 140 \ boxes=140×250}}

\sf{=Rs \ 35000}

\sf\purple{\tt{\therefore{1400 \ tiles \ of \ Rs \ 35000 \ are \ required.}}}

Similar questions