Math, asked by ishika33748, 1 year ago

.
4. The population of a place in a particular year increased by 15%. Next year, it decreased by 15%. Find
net increase or decrease percent in the initial population.​

Answers

Answered by Anonymous
84

\textbf{\underline{\underline{According\:to\:the\:Question}}}

Assumption

Initial population be p

{\boxed{\sf\:{Population\;after\;1^{st}\;year}}}

Increase = 15% of p

= 0.15p

{\boxed{\sf\:{Population}}}

= p + 0.15p

= 1.15p

{\boxed{\sf\:{Population\;after\;2^{nd}\;year}}}

{\boxed{\sf\:{Decrease}}}

= 15% of 1.15p

= 0.15(1.15p)

= 0.1725p

{\boxed{\sf\:{Population}}}

= 1.15p - 0.1725p

=  0.9775p

{\boxed{\sf\:{Net\;Decrease}}}

= p - 0.9775p

= 0.0225

{\boxed{\sf\:{Percentage\;Decrease}}}

\tt{\rightarrow\dfrac{Decrease}{Original}\times 100}

\tt{\rightarrow\dfrac{0.0225p}{p}\times 100}

= 2.25%

Answered by BrainlyConqueror0901
74

Answer:

{\pink{\green{\sf{\therefore Decrease \%=2.25\%}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

• In the given question information given about population in a particular year and in next year population increases then in second year population decreases.

• We have to find net increase or decrease percent in the initial population.

 \underline \bold{Given : } \\  \implies First \: year \: Increase = 15  \% \\   \implies Second \: year \: decrease = 15 \% \\  \\  \underline \bold{To \:Find : } \\  \implies Net \: increase  \: or  \: de crease \% =  ?

• According to given question :

 \bold {Let \: population \: be \: x} \\  \bold{First  \: year \: increase} \\  \implies 15 \%  \: of \: x \\  \implies  \frac{15}{10 0 }  \times x \\   \bold{\implies 0.15x }\\ \\   \bold{Increased \: population}\\   \implies x + 0.15x  \\  \bold{\implies 1.15x} \\  \\  \bold{Second \: year \: decrease} \\  \implies 15 \%  \: of \: 1.15x \\  \implies  \frac{15}{100}  \times  \frac{115x}{100}  \\  \implies  \frac{1725x}{10000}  \\  \implies 0.1725x \\  \\  \bold{Decreased \: population} \\  \implies 1.15x - 0.1725 \\   \bold{\implies 0.9775x} \\  \\ So, \: Decreased \: population \: is \: less  \\  than \: initial \: population \\  \\  \bold{Net \: Decrease} \\  \implies (Initial - final)population \\  \implies x - 0.9775x \\  \implies 0.0225x \\  \\  \bold{net \: decrease \%} \\  \implies  \frac{0.0225x}{x}  \times 100 \\  \implies 0.0225 \times 100 \\   \bold{\implies 2.25 \% } \\  \\   \bold{\therefore Decrease \% = 2.25 \%}

Similar questions