Math, asked by RUDRAJYOTIMONDAL, 1 year ago

(4 + under root 5 /4 - under root 5 ) +( 4 -root under 5/ 4 + root under5) . sinplify

Answers

Answered by Shinchan001
2

 \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \\

On rationalizing the denominator we get,

 =  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  \times  \frac{4 +  \sqrt{5} }{4 +  \sqrt{5} }   +   \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \times  \frac{4 -  \sqrt{5} }{4 -  \sqrt{5} }  \\  \\  =  \frac{ {(4)}^{2}  +  {( \sqrt{5} )}^{2}  + 2(4)( \sqrt{5} )}{ {(4)}^{2}  -  {( \sqrt{5}) }^{2} }  +  \frac{ {(4)}^{2}  +  {( \sqrt{5}) }^{2}  - 2(4)( \sqrt{5}) }{ {(4)}^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  =  \frac{16 + 5 + 8 \sqrt{5} }{16 - 5}  +  \frac{16 + 5 - 8 \sqrt{5} }{16 - 5}  \\  \\  =  \frac{21 + 8 \sqrt{5} }{11}  +  \frac{21 - 8 \sqrt{5} }{11}  \\  \\  =  \frac{21 + 8 \sqrt{5} + 21 - 8 \sqrt{5}  }{11}  \\  \\  =  \frac{42}{11}  \\  \\
Similar questions