Math, asked by sdevesh480, 21 hours ago

4/x-8=2/x-3+3/x+2 solve by quadratic formula

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

The given quadratic equation is

\rm :\longmapsto\:\dfrac{4}{x - 8}  = \dfrac{2}{x - 3}  + \dfrac{3}{x + 2}

\rm :\longmapsto\:\dfrac{4}{x - 8}  = \dfrac{2(x + 2) + 3(x - 3)}{(x - 3)(x + 2)}

\rm :\longmapsto\:\dfrac{4}{x - 8}  = \dfrac{2x + 4 + 3x - 9}{ {x}^{2}  + 2x - 3x - 6}

\rm :\longmapsto\:\dfrac{4}{x - 8}  = \dfrac{5x  - 5}{ {x}^{2} - x - 6}

\rm :\longmapsto\:4( {x}^{2} - x - 6) = (x - 8)(5x - 5)

\rm :\longmapsto\:4{x}^{2} - 4x -24 = 5 {x}^{2} - 40x - 5x + 40

\rm :\longmapsto\:4{x}^{2} - 4x -24 = 5 {x}^{2} - 45x + 40

\rm :\longmapsto\:4{x}^{2} - 4x -24 - 5 {x}^{2} + 45x - 40 = 0

\rm :\longmapsto\: -  {x}^{2} + 41x - 64 = 0

\rm :\longmapsto\: -  ({x}^{2}  -  41x  + 64 )= 0

\rm :\longmapsto\: {x}^{2}  -  41x  + 64= 0

Here,

 \red{\rm :\longmapsto\:a = 1}

 \red{\rm :\longmapsto\:b =  - 41}

 \red{\rm :\longmapsto\:c =  64}

So,

Let first find Discriminant, D.

\rm :\longmapsto\:D =  {b}^{2} - 4ac

\rm \:  =  \: {( - 41)}^{2} - 4 \times 1 \times 64

\rm \:  =  \:1681 - 256

\rm \:  =  \:1425

\bf\implies \:D = 1425 > 0

So, Solution of quadratic equation is given by

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{D} }{2a}

\rm \:  =  \:  \dfrac{ - ( - 41) \:  \pm \:  \sqrt{1425} }{2 \times 1}

\rm \:  =  \:  \dfrac{ 41 \:  \pm \:  \sqrt{5 \times 5 \times 57} }{2 }

\rm \:  =  \:  \dfrac{ 41 \:  \pm \: 5 \sqrt{ 57} }{2 }

Hence,

\bf\implies \:x \:   =  \:  \dfrac{ 41 \:  \pm \: 5 \sqrt{ 57} }{2 }

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions