Math, asked by bonnietinia, 1 year ago

4[x raised to power 2 +1/xraised to power 2]-[x+1/x]=60
Solve x






JinKazama1: Please rewrite the question

Answers

Answered by JinKazama1
3
Final Answer : x = 4 or 1/4 or (√3 - 2 )or( -2-√3)

Q :
4( {x}^{2}  +  \frac{1}{ {x}^{2} } ) - (x +  \frac{1}{x} ) = 60


Steps :
1) Let
x +  \frac{1}{x}  = t \:  \\ then \:  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {t}^{2}  - 2

2) Since, t is
4( {t}^{2}  - 2) - t = 60 \\  =  > 4 {t}^{2}  - t - 68 = 0 \\  =  > 4 {t}^{2}  + 16t - 17t - 68 = 0 \\  =  > 4t(t + 4) - 17(t + 4) = 0 \\  = (t + 4)(4t - 17) = 0 \\  =  > t =  - 4\:  \: or \\  \: t \:  =  \frac{17}{4}
3) When t = -4
x +  \frac{1}{x}  =  - 4 \\  =  >  {x}^{2}  + 4x + 1 = 0 \\  =  > x =   \frac{ - 4 +  \sqrt{12} }{2} or \:  \frac{ - 4 -  \sqrt{12} }{2}  \\  =  > x =   -2 +  \sqrt{3} or \:  - 2 -  \sqrt{3}


4) When t = 17/4
x +  \frac{1}{x}  =  \frac{17}{4}  \\  =  >  4 {x}^{2}  - 17x + 4 = 0 \\  =  > 4 {x}^{2}  - 16x - x + 4 = 0 \\  =  > 4x(x - 4) - 1(x - 4) = 0 \\  =  > (x - 4)(4x - 1) = 0 \\  =  > x = 4 \:  \:  \: or \: x \:  =  \frac{1}{4}



Therefore,
x = 4 \: or \:  \frac{1}{4}  \: or \:  - 2 -  \sqrt{3} or \:  \sqrt{3}   - 2

JinKazama1: Hope, you understand my answer :)
bonnietinia: Can u do the sum with x-1/x(the second expression
JinKazama1: which?
bonnietinia: 4[x power 2+1/xpower2]-[1-1/x]=60
bonnietinia: Sorry it will be x-1/x
bonnietinia: Instead of 1-1/x
JinKazama1: Then, x^2 + 1/x^2 will be t^2 + 2 instead of t^2 -2
JinKazama1: Then, do similarly as this given answer
Similar questions