Math, asked by shayabik, 1 year ago

4 x square + 4 x minus bracket a square minus b square bracket close equal to zero

Answers

Answered by lara26
111

this is your answer......

Attachments:
Answered by Swarup1998
2

Solution: x=-\dfrac{a+b}{2},\dfrac{a-b}{2}

NOTE:

The correct equation is

4x^{2}+4bx-(a^{2}-b^{2})=0

Step-by-step explanation:

Here, the given equation is

4x^{2}+4bx-(a^{2}-b^{2})=0

\Rightarrow 4x^{2}+4bx-a^{2}+b^{2}=0

  • Hint. We have just opened the brackets using (-)(+)=(-) and (-)(-)=(+).

\Rightarrow 4x^{2}+4bx+b^{2}-a^{2}=0

  • Hint. We have rearranged the terms so that we can use the algebraic identity (a+b)^{2}=a^{2}+2ab+b^{2}.

\Rightarrow \{(2x)^{2}+2\times 2x\times b+(b)^{2}\}-a^{2}=0

\Rightarrow (2x+b)^{2}-(a)^{2}=0

  • Hint. Now we use the algebraic identity a^{2}-b^{2}=(a+b)(a-b) to factorize the expression.

\Rightarrow (2x+b+a)(2x+b-a)=0

\therefore either 2x+b+a=0 or, 2x+b-a=0

\Rightarrow 2x=-b-a or, 2x=-b+a

\Rightarrow 2x=-(a+b) or, 2x=a-b

\Rightarrow x=-\dfrac{a+b}{2} or, x=\dfrac{a-b}{2}

Thus the required solution is

\boxed{x=-\dfrac{a+b}{2},\dfrac{a-b}{2}}

#SPJ3

Similar questions