4 xy (z^2 + 6z - 16) ÷ 2 y (2 + 8)
Answers
Answered by
0
Step-by-step explanation:
The given expression is
4yz(z²+6z-16) ÷ 2y(z+8)
It can be written as
\frac{4yz(z^2+6z-16)}{2y(z+8)}
2y(z+8)
4yz(z
2
+6z−16)
Now factories the numerator.
\frac{4yz(z^2+8z-2z-16)}{2y(z+8)}
2y(z+8)
4yz(z
2
+8z−2z−16)
\frac{4yz(z(z+8)-2(z+8))}{2y(z+8)}
2y(z+8)
4yz(z(z+8)−2(z+8))
\frac{4yz(z+8)(z-2)}{2y(z+8)}
2y(z+8)
4yz(z+8)(z−2)
Now cancel out the common facotrs.
2z(z-2)2z(z−2)
2z^2-4z2z
2
−4z
Therefore the required solution is 2z^2-4z2z
2
−4z .
Similar questions
English,
2 days ago
World Languages,
2 days ago
Math,
2 days ago
Math,
4 days ago
English,
4 days ago
Social Sciences,
8 months ago