Math, asked by m2563219, 4 days ago

4 xy (z^2 + 6z - 16) ÷ 2 y (2 + 8)​

Answers

Answered by saranshbhamuri
0

Step-by-step explanation:

The given expression is

4yz(z²+6z-16) ÷ 2y(z+8)

It can be written as

\frac{4yz(z^2+6z-16)}{2y(z+8)}

2y(z+8)

4yz(z

2

+6z−16)

Now factories the numerator.

\frac{4yz(z^2+8z-2z-16)}{2y(z+8)}

2y(z+8)

4yz(z

2

+8z−2z−16)

\frac{4yz(z(z+8)-2(z+8))}{2y(z+8)}

2y(z+8)

4yz(z(z+8)−2(z+8))

\frac{4yz(z+8)(z-2)}{2y(z+8)}

2y(z+8)

4yz(z+8)(z−2)

Now cancel out the common facotrs.

2z(z-2)2z(z−2)

2z^2-4z2z

2

−4z

Therefore the required solution is 2z^2-4z2z

2

−4z .

Similar questions