English, asked by 10thengpurvpatel, 3 months ago


41. IfC(-1,2 ) divides the line segment connecting A(2,5) and B(x,y) in a ratio 3:4, then find the value
of x² + y²​

Answers

Answered by VεnusVεronίcα
138

\large {\textsf{\textbf{Given:}}}

Given that point C(-1,2) divides the line segment connecting A(2,5) and B(x,y) in a ratio 3:4.

 \\

\large {\textsf{\textbf{To \: find:}}}

We have to find the value of +.

 \\

\large {\textsf{\textbf{Solution:}}}

Using the section formula :

\boxed{\pmb{\sf{( \cfrac{m_1x_2 + m_2x_1}{m_2+m_1} , \cfrac{m_2y_2+m_2y_1}{m_2+m_1} )}}}

Here,

  • \sf m_1=3

  • \sf m_2=4

  • \sf x_1=2

  • \sf x_2=x

  • \sf y_1=5

  • \sf y_2=y

 \:  \: \sf :\implies(-1,2)=( \cfrac{3x + 4(2)}{3 + 4} , \cfrac{3y + 4(5)}{3+4}

 \:  \: \sf :\implies (-1,2)=( \cfrac{3x + 8}{7} , \cfrac{3y + 20}{7} )

\:\:\sf:\implies  \cfrac{3x + 8}{7}  =  - 1~;~ \cfrac{3y + 20}{7}  = 2

Solving for x and y :

\:\:\sf :\implies 3x+8=-1(7)

 \:  \:  \sf :  \implies3x + 8 =  - 7

 \:  \: \sf:\implies 3x=-7-8

 \:  \: \sf:\implies x= \cfrac{-15}{3}

\boxed {\pmb{\sf \therefore \: x=-5}}

 \:  \:  \sf :  \implies3y + 20 = 2(7)

 \:  \: \sf:\implies 3y+20=14

 \:  \: \sf :\implies 3y=14-20

 \:  \: \sf :\implies y= \cfrac{-6}{3}

 \boxed{\pmb{\sf \therefore \: y=-2}}

Now, substituting and finding x²+y² :

 \:  \: \sf :\implies x^2+y^2

 \:  \: \sf :\implies ( - 5)^2+(-2)^2

 \:  \: \sf :\implies 25+4

\boxed {\pmb{\sf \therefore \: x^2+y^2=29}}

Similar questions