4³+8³+12³+.............+up to n terms =16n²(n+1)² by
Answers
We have to prove that 4³ + 8³ + 12³ + ..... + upto n terms = 16n²(n + 1)² by mathematical induction.
Let P(n) = 4³ + 8³ + 12³ + ..... + upto n terms = 16n²(n + 1)²
for n = 1,
LHS = P(1) = 4³ = 64
RHS = 16(1)²(1 + 1)² = 16 × 4 = 64
LHS = RHS
so, P(1) is true.
for n = k,
P(k) = 4³ + 8³ + 12³ + .... + (4k)³ = 16k²(k + 1)²........(1)
for n = (k + 1)
P(k + 1) = 4³ + 8³ + 12³ + .... + {4(k + 1)}³ = 16(k + 1)²(k + 2)² .........(2)
from equation (1)
4³ + 8³ + 12³ + .... + (4k)³ = 16k²(k + 1)²
adding {4(k + 1)}³ equation (1) we get,
4³ + 8³ + 12³ + ....... + (4k)³ + {4(k + 1)}³ = 16k²(k + 1)² + {4(k + 1)}³
= 16k²(k + 1)² + 64(k + 1)³
= 16(k + 1)²[k² + 4k + 4]
= 16(k + 1)²(k + 2)²
Therefore 4³ + 8³ + 12³ + ....... + (4k)³ + {4(k + 1)}³ = 16(k + 1)²(k + 2)²
from equations (2) , P(K+1) is true . it is only when P(k) is true. from principle of mathematical induction, P(n) is true for all natural number.
Therefore 4³ + 8³ + 12³ + ..... upto n terms = 16n²(n + 1)² is true.
hence proved.