Math, asked by anurag2006main, 9 months ago

48. If cos A + cos²A = 1 then sin? A+ sinº A = ?

Answers

Answered by ismartshankar77
0

COS^2A=1-SIN^2A

THEREFORE

2[1-SIN^2A]=1

2-2SIN^2A=1

-2SIN^A=1-2

2SIN^A=1

SIN^2A=1/2

UNDERROOTON BOTH SIDE

SINA=1/ROOT2

SINA+SINA=1/ROOT2+1/ROOT2

SINA+SINA=2/ROOT2

SINA+SINA=ROOT2

PLEASE MARK THE ANSWER AS BRAINLIST

PLEASE FOLLOW ME

Answered by Anonymous
1

QUESTION:

If

 \cos(a)  +  { \cos(a) }^{2}  = 1

then

 \sin {a}^{2}   +  { \sin(a) }^{4}  = ......

(correct question )

☆ANSWER:

We use the trigonometry identity here ;

\huge\pink { { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2}  = 1}

with this identity we can say that,

 { \sin( \alpha ) }^{2}  = 1 -  { \cos( \alpha ) }^{2}

or

 { \cos( \alpha ) }^{2}  = 1 -  { \sin( \alpha ) }^{2}

now come to main question ;

 \cos(a)  +  { \cos(a) }^{2}  = 1

 \cos(a)  = 1 -  { \cos(a) }^{2}

so,

 \cos(a)  =  { \sin(a) }^{2}  \\ (with \: identity)

such that;

 \cos(a)  =  { \sin(a) }^{2}

so,

 { \cos(a) }^{2}  =  {  \sin(a)  }^{4}

now,

 \huge\blue {{ \sin(a) }^{2}  +  { \sin(a) }^{4}  = 1}

☆other trigonometry identity;

1.

1 +  { \tan( \alpha ) }^{2}  =  { \sec( \alpha ) }^{2}

2.

1 +  { \cot( \alpha ) }^{2}  =  { \csc( \alpha ) }^{2}

3.

 \tan( \alpha )  \times  \cot( \alpha )  = 1

Similar questions