Math, asked by mercurytraders733, 10 months ago

48. Solve the following pair of equations. 10/x+y +2/x-y =4 and 15/x+y - 5/x-y =-2​

Answers

Answered by Anonymous
3

\bold\red{\underline{\underline{Answer:}}}

\bold{Values \ of \ x \ and \ y \ are}

\bold{\frac{29}{12} \ and \frac{5}{6} \ respectively.}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ equations \ are}

\bold{\frac{10}{x+y}+\frac{2}{x-y}=4...(1)}

\bold{\frac{15}{x+y}+\frac{5}{x-y}=-2...(2)}

\bold{Let \frac{1}{x+y} \ be \ a \ and \frac{1}{x-y} \ be \ b}

\bold{,we \ get}

\bold{10a+2b=4...(3)}

\bold{15a+5b=-2...(4)}

\bold{Multiply \ eq(3) \ by \ 3, \ we \ get}

\bold{30a+6b=12...(5)}

\bold{Multiply \ eq (4) \ by \ 2, \ we \ get}

\bold{30a+10b=-4...(6)}

\bold{Subtract \ eq(5) \ from \ eq(6), \ we \ get}

\bold{4b=-16}

\bold{b=-4}

\bold{Substituting \ in \ eq(3)}

\bold{10a+2(-4)=4}

\bold{10a-8=4}

\bold{10a=12}

\bold{a=\frac{6}{5}}

\bold{Resubstituting \ values \ of \ a \ b}

\bold{x+y=\frac{5}{6}...(7)}

\bold{x-y=4...(8)}

\bold{Add \ eq (7) \ and \ eq (8)}

\bold{2x=\frac{29}{6}}

\bold{x=\frac{29}{12}}

\bold{Substituting \ in \ eq (7)}

\bold{y=\frac{10}{12}}

\bold{y=\frac{5}{6}}

\bold\purple{\tt{\therefore{Values \ of \ x \ and \ y \ are}}}

\bold\purple{\frac{29}{12} \ and \frac{5}{6} \ respectively.}

Similar questions