49. Evaluate ſsin (log x) dx.
Answers
Answered by
1
Answer :
Rule -
∫ u v dx
= u ∫ v dx - ∫ { d/dx (u) ∫ v dx } dx
Now,
∫ sin (logx) dx
= sin (logx) × ∫ dx - ∫ { d/dx sin (logx) ∫dx } dx
= sin (logx) × x - ∫ { cos (logx) × 1/x × x } dx + c,
c = integral constant
= x sin (logx) - ∫ cos (logx) dx + c
= x sin (logx) - [ cos (logx) ∫ dx - ∫ { d/dx cos (logx) ∫ dx } ] + c
= x sin (logx) - x cos (logx)
+ ∫ { - sin (logx) × 1/x × x } dx + c
= x {sin (logx) - cos (logx)}
- ∫ sin (logx) dx + c
⇒ 2 ∫ sin (logx) dx
= x {sin (logx) - cos (logx)} + c
⇒ ∫ sin (logx) dx
= x/2 {sin (logx) - cos (logx) } + c/2
.
hope it helps
Similar questions