4a²+ b²+4 ab +8a +4b+4
Answers
Step-by-step explanation:
Factor each part separately:
(2a)² + 4a(b + 2) + (b + 2)²
Let u = 2a
Let v = b + 2
So you have:
u² + 2uv + v²
That's in the form of a perfect square:
(u + v)²
Answer
(2a + b+2)²
Factorise -
4a² + b² + 4ab + 8a + 4b + 4
Solution -
4a² + b² + 4ab + 8a + 4b + 4
=> 4a² + 4ab + b² + 8a + 4b + 4
=> ( 2a )² + 2 ( 2a )( b ) + b² + 8a + 4b + 4
=> ( 2a + b )² + 8a + 4b + 4
=> ( 2a + b )² + 4 ( 2a + b ) + 4 .
=> ( 2a + b )² + ( 2a + b ) [ 2 + 2 ] + 4
=> ( 2a + b )² + 2 ( 2a + b ) + 2 ( 2a + b ) + 4
=> ( 2a + b ) [ 2a + b + 2 ] + 2 ( 2a + b ) + 4
=> ( 2a + b ) [ 2a + b + 2 ] + 2 [ 2a + b + 2 ]
=> [ 2a + b + 2 ] ( 2a + b + 2 )
=> [ 2a + b + 2 ] × [ 2 a + b + 2 ]
=> [ 2a + b + 2 ]².
This is the required answer.
_______________________________________