4cos2(this is square)A+4sinA=5, show that sec2(this is square)A−tan2(this is square)A=1
Answers
Solution :-
Given that ,
- 4cos²A + 4sinA = 5
We need to find ,
- sec²A - tan²A = 1
Simplifying the given ,
⇒ 4 [ cos²A + sinA ] = 5
⇒ cos²A + sinA = 5/4
⇒ [ 1 - sin²A ] + sinA = 5/4
⇒ sinA - sin²A = 5/4 - 1
⇒ sinA - sin²A = 1/4
⇒ sin²A - sinA + 1/4 = 0
Let sinA be x
⇒ x² - x + 1/4 = 0
Multiply with 4 on both sides ,
⇒ 4 [ x² - x + 1/4 ] = 0 × 4
⇒ 4x² - 4x + 1 = 0
Substituting ,
• - 4x = - 2x - 2x
⇒ 4x² - 2x - 2x + 1 = 0
⇒ 2x ( 2x - 1 ) - 1 ( 2x - 1 ) = 0
⇒ ( 2x - 1 ) ( 2x - 1 ) = 0
⇒ ( 2x - 1 )² = 0
⇒ 2x - 1 = 0
⇒ 2x = 1
⇒ x = 1/2
So , here x = sinA
⇒ sinA = 1/2
Substituting , 1/2 = sin30°
⇒ sinA = sin30°
By comparing ,
⇒ A = 30°
Now , proving sec²A - tan²A = 1
By substituting , A = 30°
➵ sec²30° - tan²30° = 1
➵ [ 2/√3 ] ² - [ 1/√3 ]² = 1
➵ 4/3 - 1/3 = 1
➵ 4 - 1/3 = 1
➵ 3/3 = 1
➵ 1 = 1
LHS = RHS
Hence , proved !!
Given:
- 4cos²A + 4sinA = 5
To Prove:
- sec²A - tan²A = 1
Solution:
Given that,
✒ 4cos²A + 4sinA = 5
➡ 4(cos²A + sinA )= 5
➡ (1 - sin²A) + sinA = 5/4
➡ sin²A - sinA = 5/4 - 1
➡ sin²A - sinA = 1/4
➡ sin²A - sinA + 1/4 = 0
[ Now, let's sinA = R ]
➡ R² - R + 1/4 = 0
[ Multiply by 4 both sides, we get ]
➡ 4R² - 4R + 1 = 0
➡ (2R - 1)² = 0
➡ 2R - 1 = 0
➡ R = 1/2
✒ So, sinA = 1/2 [ °.° sinA = R ]
➡ sinA = sin30° [ °.° 1/2 = sin30° ]
[ By comparing ]
➡ A = 30°
Now, Proving sec²A - tan²A = 1,
➡ sec²30° - tan²30° = 1 [ °.° A = 30° ]
➡ (2/√3)² - (1/√3)² = 1
➡ 4/3 - 1/3 = 1
➡ 3/3 = 1
➡ 1 = 1
LHS = RHS.