Math, asked by dhairya3889, 9 months ago

(4k-1)/3-2=k/2+1/6 find k

Answers

Answered by nigamsoni014
0

Here is what u are finding

Plz. Mark it as brainiest

Attachments:
Answered by bhagyashreechowdhury
0

Given:

\frac{4k - 1}{3}\: -\: 2\: =\: \frac{k}{2}\:  +\: \frac{1}{6}

To find:

The value of k

Solution:

To find the value of k we will simplify the above-given equation which follows:

\frac{4k - 1}{3}\: -\: 2\: =\: \frac{k}{2}\:  +\: \frac{1}{6}

taking L.C.M. of the denominators on both sides of the equation

\frac{4k\: -\: 1\:-\:6}{3}\: =\: \frac{3k\:+\:1}{6}

\frac{4k\: -\: 7}{3}\: =\: \frac{3k\:+\:1}{6}

multiplying both sides of the equation by 3

\frac{4k\: -\: 7}{1}\: =\: \frac{3k\:+\:1}{2}

now, we will do cross multiplication

2[4k - 7]\:=\:3k+1

8k - 14\:=\:3k+1

8k - 3k\:=\:14+1

5k \:=\:15

k\:=\:\frac{15}{5}

k\:=\:3

Thus, \boxed{\bold{The\:value\:of \:k\:is\:\underline{3}.}}

----------------------------------------------------------------------------------------------

Also View:

Find the value of k for equal roots in quadratic equation x2 - 2x(1+3k)+7(3+2k)=0.

https://brainly.in/question/1667654

find the value of k such that the polynomial x^2-(k+6)x+2(2k-1) has sum of its zeros equal to half of their product​.

https://brainly.in/question/9925176

Find the value of k for which the quadratic equation (k-2)x^2 + 2(2k-3)x +(5k-6) = 0 has equal roots.

https://brainly.in/question/272323

Similar questions