Math, asked by srinivasguptha, 1 year ago

4sin(420-a)cos(60+a)

Answers

Answered by BrainlyFIRE
7
hi mate


your answer is in attachment
Attachments:
Answered by pinquancaro
15

Answer:

4\sin(420-a)\cos(60+a)=\sqrt3-2\sin 2a

Step-by-step explanation:

Given : Expression 4\sin(420-a)\cos(60+a)

To find : Solve the expression ?

Solution :

We can write the expression as

=4\sin(360+(60-a))\cos(60+a)

We know, \sin (360+\theta)=\sin \theta

=4\sin(60-a)\cos(60+a)

Applying formula,

\sin (a-b)=\sin a \cos b-\cos a \sin b\\\cos (a+b)=\cos a \cos b-\sin a \sin b

=4(\sin 60 \cos a-\cos 60 \sin a)(\cos 60 \cos a-\sin 60 \sin a)

=4(\frac{\sqrt3}{2}\cos a-\frac{1}{2}\sin a)(\frac{1}{2} \cos a-\frac{\sqrt3}{2}\sin a)

=\frac{4}{4}[(\sqrt3\cos a-\sin a)(\cos a-\sqrt3\sin a)]

=\sqrt3\cos^2 a-\sin a\cos a-3\sin a\cos a+\sqrt3\sin^2a

=\sqrt3(\cos^2a+\sin^2a)-4\sin a\cos a

=\sqrt3(1)-4\sin a\cos a

=\sqrt3-2\sin 2a

Therefore, 4\sin(420-a)\cos(60+a)=\sqrt3-2\sin 2a

Similar questions